×

zbMATH — the first resource for mathematics

Transcendental values of class group \(L\)-functions. (English) Zbl 1281.11071
In this article, the authors consider the question of linear independence of class group \(L\)-functions. Let \(K\) be an algebraic number field and \(f\) a complex-valued function of the ideal class group \({\mathfrak H}_K\) of \(K\). Here the authors consider the Dirichlet series \[ L(s,f) := \sum_{\mathfrak a} \frac{f({\mathfrak a})}{{\mathbf N}(\mathfrak a )^s}, \] where the summation is over all integral ideals \(\mathfrak a\) of the ring of integers \(\mathcal{O_K}\) of \(K\). If \(f\) is identically 1, then \(L(s,f)\) is the Dedekind zeta function of \(K\). If \(f\) is a character \(\chi\) of the ideal class group \({\mathfrak H}_K\) of \(K\), then, \(L(s,\chi)\) is a Hecke \(L\)-function. The goal of the authors is to investigate special values of \(L(s,f)\) at \(s=1\) when \(K\) is an imaginary quadratic field and \(f\) takes algebraic values.

In particular, they investigate the transcendental nature of \(L(1,\chi)\) when \(\chi\) is an ideal class character and \(K\) is imaginary quadratic and prove the following beautiful theorem:

Let \(K\) be an imaginary quadratic field and \({\mathfrak H}_K\) its ideal class group. The values \(L(1,\chi)\), as \(\chi\) ranges over the non-trivial characters of the class group (modulo the action of complex conjugation), and \(\pi\) are linearly independent over \(\overline{\mathbb Q}\).

The basic tools are Kronecker’s limit formula and Baker’s theory of linear forms in logarithms.

In the second part of the paper, they derive an upper bound of the number of non-trivial characters \(\chi \!\!\pmod{q}\) for which \(L'(1,\chi)=0\). Conjecturally, \(L'(1,\chi)\) is never equal to zero which is a deep arithmetic question.

MSC:
11J81 Transcendence (general theory)
11J86 Linear forms in logarithms; Baker’s method
11M20 Real zeros of \(L(s, \chi)\); results on \(L(1, \chi)\)
11R42 Zeta functions and \(L\)-functions of number fields
11R47 Other analytic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baker A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1975) · Zbl 0297.10013
[2] Chowla S., Selberg A.: On Epstein’s zeta function. J. Reine Angew. Math. 227, 86–110 (1967) · Zbl 0166.05204
[3] Chudnovsky G.V.: Algebraic independence of constants connected with the exponential and elliptic functions. Dokl. Akad. Nauk. Ukrain. SSR Ser. A 8, 698–701 (1976)
[4] Davenport H.: Multiplicative Number Theory, 2nd edn. Springer, New York (1980) · Zbl 0453.10002
[5] Deligne P., Milne J.S., Ogus A., Shih K.: Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, vol. 900. Springer, Berlin (1982) · Zbl 0465.00010
[6] Grinspan P.: Measures of simultaneous approximation for quasi-periods of abelian varieties. J. Number Theory 94(1), 136–176 (2002) · Zbl 1030.11033 · doi:10.1006/jnth.2001.2733
[7] Gross B.H.: On an identity of Chowla and Selberg. J. Number Theory 11, 344–348 (1979) · Zbl 0418.14024 · doi:10.1016/0022-314X(79)90007-6
[8] Gun, S., Murty, M.R., Rath, P.: Transcendental nature of special values of L-functions. Can. J. Math. (2010). http://smc.math.ca/10.4153/CJM-2010-078-9 · Zbl 1218.11070
[9] Gun, S., Murty, M.R., Rath, P.: On a conjecture of Chowla and Milnor. Can. J. Math. (to appear) · Zbl 1273.11135
[10] Ihara Y., Kumar Murty V., Shimura M.: On the logarithmic derivatives of Dirichlet L-functions at s = 1. Acta Arith 137(3), 253–276 (2009) · Zbl 1213.11159 · doi:10.4064/aa137-3-6
[11] Lang S.: Elliptic functions. Addison-Wesley, Reading (1973) · Zbl 0316.14001
[12] Lang S.: Algebraic Number Theory. Addison-Wesley, Reading (1970) · Zbl 0211.38404
[13] Ram Murty, M.: Problems in Analytic Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 206. Readings in Mathematics. Springer, New York (2008) · Zbl 1190.11001
[14] Ram Murty M., Saradha N.: Transcendental values of the digamma function. J. Number Theory 125, 298–318 (2007) · Zbl 1222.11097 · doi:10.1016/j.jnt.2006.09.017
[15] Nesterenko, Y., Philippon, P.: Introduction to Algebraic Independence Theory. Springer Lecture Notes, vol. 1752 (2001) · Zbl 0966.11032
[16] Ramachandra K.: Some applications of Kronecker’s limit formula. Ann. Math. 80, 104–148 (1964) · Zbl 0142.29804 · doi:10.2307/1970494
[17] Scourfield E.: On ideals free of large prime factors. Journal de thĂ©orie des nombres de Bordeaux 16(3), 733–772 (2004) · Zbl 1073.11061 · doi:10.5802/jtnb.468
[18] Siegel, C.L.: Advanced Analytic Number Theory. TIFR Lecture Notes (1965) · Zbl 0278.10001
[19] Vasilev, K.G.: On the algebraic independence of the periods of abelian integrals. Mat. Zametki 60(5), 681–691, 799 (1996)
[20] Washington L.: Introduction to cyclotomic fields. Graduate Texts in Mathematics, vol. 83. Springer, New York (1982) · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.