Medina, Liliana Puchuri Degree of the first integral of a pencil in \(\mathbb{P}^2\) defined by Lins Neto. (English) Zbl 1281.32028 Publ. Mat., Barc. 57, No. 1, 123-137 (2013). Summary: Let \(\mathcal{P}_4\) be the linear family of foliations of degree \(4\) in \(\mathbb{P}^2\) introduced by A. Lins Neto, whose set of parameters with first integral \(I_p(\mathcal{P}_4)\) is dense and countable. In this work, we compute explicitly the degree of the rational first integral of the foliations in this linear family, as a function of the parameter. Cited in 2 Documents MSC: 32S65 Singularities of holomorphic vector fields and foliations 37F75 Dynamical aspects of holomorphic foliations and vector fields Keywords:Poincaré problem; pencil of foliations; first integral PDF BibTeX XML Cite \textit{L. P. Medina}, Publ. Mat., Barc. 57, No. 1, 123--137 (2013; Zbl 1281.32028) Full Text: DOI arXiv Euclid OpenURL References: [1] M. M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140(2) (1994), 289\Ndash294. \smallDOI: 10.2307/2118601. · Zbl 0821.32026 [2] D. Cerveau and A. Lins Neto, Holomorphic foliations in \(\mathbb{CP}(2)\) having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41(4) (1991), 883\Ndash903. · Zbl 0734.34007 [3] G. E. Collins and J. R. Johnson, The probability of relative primality of Gaussian integers, in: “Symbolic and algebraic computation” (Rome, 1988), Lecture Notes in Comput. Sci. 358 , Springer, Berlin, 1989, pp. 252\Ndash258. \smallDOI: 10.1007/3-540-51084-2\(_{-}\)23. [4] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sci. Math. Astron. , Sér. 2, 2(1) (1878), 60\Ndash96, 151\Ndash200. · JFM 10.0214.01 [5] A. García Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41(2) (1997), 357\Ndash373. \smallDOI: 10.5565/PUBLMAT\(_{-}\)41297\(_{-}\)03. · Zbl 0910.32039 [6] P. Griffiths and J. Harris, “Principles of algebraic geometry” , Reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. · Zbl 0836.14001 [7] T. Hayashida and M. Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan 17 (1965), 1\Ndash16. \smallDOI: 10.2969/jmsj/01710001. · Zbl 0132.41701 [8] J. P. Jouanolou, “Équations de Pfaff algébriques” , Lecture Notes in Mathematics 708 , Springer, Berlin, 1979. · Zbl 0477.58002 [9] A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. (4) 35(2) (2002), 231\Ndash266. \smallDOI: 10.1016/S0012-9593(02)01089-3. · Zbl 1130.34301 [10] A. Lins Neto, Curvature of pencils of foliations. Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I, Astérisque 296 (2004), 167\Ndash190. · Zbl 1081.32021 [11] A. Lins Neto and B. Azevedo Scárdua, “Folheações algébricas complexas” , 21 Colóquio Brasileiro de Matemática, Conselho Nacional de Desenvolvimento Científico e Technológico, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1997. [12] M. McQuillan, Non-commutative Mori Theory, rev. version, Technical Report IHES-M-2001-42 (2001). · Zbl 1078.14503 [13] J. V. Pereira, Vector fields, invariant varieties and linear systems, Ann. Inst. Fourier (Grenoble) 51(5) (2001), 1385\Ndash1405. \smallDOI: 10.5802/aif.1858. · Zbl 1107.37038 [14] H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 5(1) (1891), 161\Ndash191. · JFM 23.0319.01 [15] L. Puchuri, Famílias lineares de folheações com curvatura zero numa superfície complexa compacta, PhD thesis, Instituto de Matemática Pura e Aplicada (2010). [16] M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math. 128(3) (1997), 495\Ndash500. \smallDOI: 10.1007/s002220050150. · Zbl 0923.32025 [17] I. Stewart and D. Tall, “Algebraic number theory and Fermat’s last theorem” , Third edition, A K Peters, Ltd., Natick, MA, 2002. · Zbl 0994.11001 [18] A. Walfisz, Uber die Wirksamkeit einiger Abschätzungen trigonometrischer Summen, Acta Arith. 4 (1958), 108\Ndash180. · Zbl 0084.27304 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.