# zbMATH — the first resource for mathematics

Asymptotically minimax Bayesian predictive densities for multinomial models. (English) Zbl 1281.62036
Summary: One-step ahead prediction for the multinomial model is considered. The performance of a predictive density is evaluated by the average Kullback-Leibler divergence from the true density to the predictive density. Asymptotic approximations of risk functions of Bayesian predictive densities based on Dirichlet priors are obtained. It is shown that a Bayesian predictive density based on a specific Dirichlet prior is asymptotically minimax. The asymptotically minimax prior is different from known objective priors such as the Jeffreys prior or the uniform prior.
##### MSC:
 62C10 Bayesian problems; characterization of Bayes procedures 62C20 Minimax procedures in statistical decision theory 62F15 Bayesian inference
Full Text:
##### References:
 [1] Aitchison, J. (1975). Goodness of prediction fit., Biometrika , 62 , 547-554. · Zbl 0339.62018 · doi:10.1093/biomet/62.3.547 [2] Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors., Journal of the American Statistical Association , 84 , 200-207. · Zbl 0682.62018 · doi:10.2307/2289864 [3] Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion)., Journal of Royal Statistical Society B, 41 , 113-147. · Zbl 0428.62004 [4] Bernardo, J. M. (2005). Reference analysis., Handbook of Statistics , 25 , Dey, K. K. and Rao C. R. eds., Elsevier, Amsterdam 17-90. · Zbl 0682.62018 · doi:10.2307/2289864 [5] Clarke, B. (2007). Information optimality and Bayesian modelling., Journal of Econometrics , 138 , 405-429. · Zbl 1418.62024 · doi:10.1016/j.jeconom.2006.05.003 [6] Clarke, B. and Barron, A. R. (1994). Jeffreys’ prior is asymptotically least favorable under entropy risk., Journal of Statistical Planning and Inference , 41 , 36-60. · Zbl 0820.62006 · doi:10.1016/0378-3758(94)90153-8 [7] Grünwald, P. D. and Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory., Annals of Statistics , 32 , 1367-1433. · Zbl 1048.62008 · doi:10.1214/009053604000000553 [8] Ibragimov, I. A. and Hasminskii, R. Z. (1973). On the information contained in a sample about a parameter. In, 2nd Intl. Symp. on Information Theory , Akademiai, Kiado, Budapest 295-309. · Zbl 0289.62010 [9] Komaki, F. (1996). On asymptotic properties of predictive distributions., Biometrika , 83 , 299-313. · Zbl 0864.62007 · doi:10.1093/biomet/83.2.299 · www3.oup.co.uk [10] Komaki, F. (2004). Simultaneous prediction of independent Poisson observables., Annals of Statistics , 32 , 1744-1769. · Zbl 1092.62036 · doi:10.1214/009053604000000445 [11] Komaki, F. (2011). Bayesian predictive densities based on latent information priors., Journal of Statistical Planning and Inference , 141 , 3705-3715. · Zbl 1235.62028 · doi:10.1016/j.jspi.2011.06.009 [12] Romanovsky, V. (1923). Note on the moments of a binomial, ( p + q ) n about its mean, Biometrika , 15 , 410-412. [13] Xie, Q. and Barron, A. R. (1997). Minimax redundancy for the class of memoryless sources., IEEE Transactions on Information Theory , 43 , 646-657. · Zbl 0872.94017 · doi:10.1109/18.556120 [14] Xie, Q. and Barron, A. R. (2000). Asymptotic minimax regret for data compression, gambling, and prediction., IEEE Transaction on Information Theory , 46 , 431-445. · Zbl 0996.94025 · doi:10.1109/18.825803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.