zbMATH — the first resource for mathematics

Transcendental values of class group \(L\)-functions. II. (English) Zbl 1282.11082
Summary: Let \(K\) be an imaginary quadratic field and \(\mathfrak{f}\) an integral ideal. Denote by \(Cl(\mathfrak{f})\) the ray class group of \(\mathfrak{f}\). For every non-trivial character \(\chi\) of \(Cl(\mathfrak{f})\), we show that \(L(1,\chi )/\pi \) is transcendental. If \(\mathfrak{f}=\overline{\mathfrak{f}}\), then complex conjugation acts on the character group of \(Cl(\mathfrak{f})\). Denoting by \(\widehat {Cl(f)}^+\) the orbits of the group of characters, we show that the values \(L(1,\chi )\) as \(\chi\) ranges over elements of \(\widehat {Cl(\mathfrak{f})}^+\) are linearly independent over \(\overline{\mathbb{Q}}\). We give applications of this result to the study of transcendental values of Petersson inner products and certain special values of Artin \(L\)-series attached to dihedral extensions.
Part I, cf. Math. Ann. 351, No. 4, 835–855 (2011; Zbl 1281.11071).

11J81 Transcendence (general theory)
11M32 Multiple Dirichlet series and zeta functions and multizeta values
Full Text: DOI
[1] Alan Baker, Transcendental number theory, Cambridge University Press, London-New York, 1975. · Zbl 0297.10013
[2] S. Chowla, The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory 2 (1970), 120 – 123. · Zbl 0211.07005 · doi:10.1016/0022-314X(70)90012-0 · doi.org
[3] M. Ram Murty and V. Kumar Murty, Transcendental values of class group \( L\)-functions, to appear in Math. Annalen. (Published online 12 December 2010.) DOI:10.1007/S00208-010-0619-y · Zbl 1281.11071
[4] M. Ram Murty and V. Kumar Murty, A problem of Chowla revisited, J. Number Theory 131 (2011), no. 9, 1723 – 1733. · Zbl 1241.11083 · doi:10.1016/j.jnt.2011.04.003 · doi.org
[5] M. Ram Murty and N. Saradha, Euler-Lehmer constants and a conjecture of Erdös, J. Number Theory 130 (2010), no. 12, 2671 – 2682. · Zbl 1204.11114 · doi:10.1016/j.jnt.2010.07.004 · doi.org
[6] M. Ram Murty and N. Saradha, Special values of the polygamma functions, Int. J. Number Theory 5 (2009), no. 2, 257 – 270. · Zbl 1189.11039 · doi:10.1142/S1793042109002079 · doi.org
[7] K. Ramachandra, Some applications of Kronecker’s limit formulas, Ann. of Math. (2) 80 (1964), 104 – 148. · Zbl 0142.29804 · doi:10.2307/1970494 · doi.org
[8] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. · Zbl 0355.20006
[9] Goro Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), no. 6, 783 – 804. · Zbl 0348.10015 · doi:10.1002/cpa.3160290618 · doi.org
[10] Carl Ludwig Siegel, Advanced analytic number theory, 2nd ed., Tata Institute of Fundamental Research Studies in Mathematics, vol. 9, Tata Institute of Fundamental Research, Bombay, 1980. · Zbl 0478.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.