×

The \(p\)-adic diaphony of the Halton sequence. (English) Zbl 1282.11087

Let \(\omega=(\mathbf{x}_n)\) be a sequence in \([0,1)^s\). Let \(\mathbb{P}\) denote the set of prime numbers. For \(\mathbf{p}=(p_1, \dots, p_s)\in \mathbb{P}^s\) the \(\mathbf{p}\)-adic diaphony \(F_N(\omega)\) of the sequence \(\omega\) was defined by P. Hellekalek [Acta Arith. 145, No. 3, 273–284 (2010; Zbl 1243.11082)]. The worst-case integration error in a function space \(\mathcal{H}\) on \([0,1)^s\) with norm \(\|\cdot\|\) is given by \[ e(\mathcal{H},\omega)=\sup_{f\in\mathcal{H}, \|f\|\leq 1}\left|\int_{[0,1]^s}f(\mathbf{x})\,d\mathbf{x}-\frac{1}{N}\sum_{n=0}^{N-1}f(\mathbf{x}_n)\right|. \] In this paper it is shown that the worst-case integration error in a certain reproducing kernel Hilbert space \(\mathcal{H}_{\mathbf{p},s}\) and the \(\mathbf{p}\)-adic diaphony \(F_N(\omega)\) of the sequence \(\omega\) are related by \(e(\mathcal{H}_{\mathbf{p},s},\omega)=\sqrt{\sigma_{\mathbf{p}}-1}F_N(\omega)\) where \(\sigma_{\mathbf{p}}=\prod_{i=1}^s(p_i+1)\). The main result of this paper is that the \(\mathbf{p}\)-adic diaphony \(F_N(\omega)\) of the Halton sequence \(\omega\) in pairwise different prime base \(\mathbf{p}=(p_1, \dots, p_s)\) satisfies \(F_N(\omega)=O((\log N)^{s/2}/N)\).

MSC:

11K06 General theory of distribution modulo \(1\)
11K38 Irregularities of distribution, discrepancy
11K41 Continuous, \(p\)-adic and abstract analogues

Citations:

Zbl 1243.11082
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] N. Aronszajn, Theory of reproducing kernels , Trans. Amer. Math. Soc. 68 (1950), 337-404. · Zbl 0037.20701 · doi:10.2307/1990404
[2] J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worst-case error , Math. Comput. Simulation 70 (2005), 159-171. · Zbl 1193.65003 · doi:10.1016/j.matcom.2005.06.004
[3] J. Dick and F. Pillichshammer, Digital nets and sequences - Discrepancy theory and quasi-Monte Carlo integration , Cambridge University Press, Cambridge, 2010. · Zbl 1282.65012
[4] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications , Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997. · Zbl 0877.11043 · doi:10.1007/BFb0093404
[5] V. Grozdanov and S. Stoilova, The general diaphony , C.R. Acad. Bulgare Sci. 57 (2004), 13-18. · Zbl 1062.65009
[6] P. Hellekalek, A general discrepancy estimate based on \(p\)-adic arithmetics , Acta Arith. 139 (2009), 117-129. · Zbl 1223.11097 · doi:10.4064/aa139-2-3
[7] P. Hellekalek, A notion of diaphony based on \(p\)-adic arithmetic , Acta Arith. 145 (2010), 273-284. · Zbl 1243.11082 · doi:10.4064/aa145-3-5
[8] P. Hellekalek and H. Leeb, Dyadic diaphony , Acta Arith. 80 (1997), 187-196.
[9] F.J. Hickernell, A generalized discrepancy and quadrature error bound , Math. Comp. 67 (1998), 299-322. · Zbl 0889.41025 · doi:10.1090/S0025-5718-98-00894-1
[10] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974; reprint, Dover Publications, Mineola, NY, 2006. · Zbl 0281.10001
[11] J. Matoušek, Geometric discrepancy. Springer, Berlin Heidelberg New York, 1999.
[12] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992. · Zbl 0761.65002
[13] I.H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? , J. Complexity 14 (1998), 1-33. · Zbl 1032.65011 · doi:10.1006/jcom.1997.0463
[14] P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden , Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121-132. · Zbl 0356.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.