Exceptional bundles associated to degenerations of surfaces. (English) Zbl 1282.14074

Given positive integers \(a,n\) with \(a<n\) and \((a,n)=1\), a Wahl singularity of type \(\frac{1}{n^2}(1,na-1)\) is the cyclic quotient singularity \(0\in \mathbb{A}^2/(\mathbb{Z}/n^2\mathbb{Z})\), where the generator \(1\) of \(\mathbb{Z}/n^2\mathbb{Z}\) acts by sending \((u,v)\) to \((\xi u,\xi^{na-1}v)\) and where \(\xi\) is a primitive \(n^2\)-th root of unity. Any such singularity admits a so-called \(\mathbb{Q}\)-Gorenstein smoothing, that is, a \(1\)-parameter deformation such that the general fibre is smooth and the canonical divisor of the total space is \(\mathbb{Q}\)-Cartier. The main result of the paper under review states, roughly speaking, that if \(X\) is a projective normal surface with a unique singularity \(P\in X\) of Wahl type \(\frac{1}{n^2}(1,na-1)\) and \(\mathcal{X}\) is a \(\mathbb{Q}\)-Gorenstein smoothing over a base \(T\), then under some technical conditions there exists a reflexive sheaf \(\mathcal{E}\) on the total space of the deformation restricting to an exceptional bundle \(F\) of rank \(n\) on a general fibre \(Y\). Furthermore, given a line bundle \(\mathcal{H}\) which is ample on the fibres of the deformation, \(F\) is slope stable with respect to \(\mathcal{H}_{|Y}\) and its Chern classes can be computed.
The rough idea of the proof of the main result is as follows. Consider the above \(1\)-parameter deformation \(\mathcal{X}\). After a base change there exists a proper birational morphism \(\pi: \widetilde{\mathcal{X}}\to \mathcal{X}\) whose exceptional locus is a normal surface \(W\) mapping to the singularity. This surface is an explicit weighted projective hypersurface determined by \(a\) and \(n\) and it is possible to construct an exceptional bundle \(G\) on \(W\) by degenerating it to a surface with a Wahl singularity of type \(\frac{1}{a^2}(1,ab-1)\) (where \(b=n\) mod \(a\)). On the other hand, the special fibre \(\widetilde{X}\) of \(\widetilde{\mathcal{X}}\) is a reducible surface which is a union of \(W\) and \(X'\), the strict transform of \(X\), intersecting along a smooth rational curve. Under the above technical assumptions there is a certain bundle on \(X'\) which can be glued to \(G\) to obtain a bundle \(E\) on \(\widetilde{X}\). The latter extends to a locally free sheaf on the total space.
The paper is organised as follows. In Section 2 the author collects some facts concerning Wahl singularities and their \(\mathbb{Q}\)-Gorenstein deformations. Section 3 presents a blowup construction showing the existence of \(\pi\) and describing the geometry, in particular the special fibre of \(\widetilde{\mathcal{X}}\), explicitly. The next section deals with the gluing procedure mentioned above while Section 5 establishes the existence of the bundle \(G\) on \(W\). In Section 6 the author considers the projective plane as an example and shows, roughly speaking, that any exceptional bundle on \(\mathbb{P}^2\) of rank greater than \(1\) comes from a deformation of a Wahl singularity and vice versa. Lastly, in the last section some facts on reflexive sheaves, toric geometry and other topics used in the paper are collected.


14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14J10 Families, moduli, classification: algebraic theory
Full Text: DOI arXiv Euclid


[1] A. B. Altman and S. L. Kleiman, Compactifying the Picard scheme , Adv. Math. 35 (1980), 50-112. · Zbl 0427.14015
[2] I. Burban and B. Kreussler, Derived categories of irreducible projective curves of arithmetic genus one , Compos. Math. 142 (2006), 1231-1262. · Zbl 1103.14007
[3] J. W. S. Cassels, An Introduction to Diophantine Approximation , Cambridge Tracts in Math. and Math. Phys. 45 , Cambridge Univ. Press, New York, 1957. · Zbl 0077.04801
[4] A. Corti, “Adjunction of log divisors” in Flips and Abundance for Algebraic Threefolds (Salt Lake City, 1991) , Astérisque 211 , Soc. Math. France, Paris, 1992, 171-182. · Zbl 0810.14003
[5] I. Dolgachev, “Weighted projective varieties” in Group Actions and Vector Fields (Vancouver, 1981) , Lecture Notes in Math. 956 , Springer, Berlin, 1982, 34-71. · Zbl 0516.14014
[6] J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur \(\mathbb{P}_{2}\) , Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 193-243. · Zbl 0586.14007
[7] P. Du Bois, Complexe de de Rham filtré d’une variété singulière , Bull. Soc. Math. France 109 (1981), 41-81. · Zbl 0465.14009
[8] R. Elkik, Solutions d’équations à coefficients dans un anneau hensélien , Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 553-603. · Zbl 0327.14001
[9] W. Fulton, Introduction to Toric Varieties , Ann. of Math. Stud. 131 , Princeton Univ. Press, Princeton, 1993. · Zbl 0813.14039
[10] A. L. Gorodentsev, “Exceptional objects and mutations in derived categories” in Helices and Vector Bundles , London Math. Soc. Lecture Note Ser. 148 , Cambridge Univ. Press, Cambridge, 1990, 57-73. · Zbl 0722.14007
[11] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérents, I , Publ. Math. Inst. Hautes Études Sci. 11 (1961).
[12] P. Hacking, Compact moduli of plane curves , Duke Math. J. 124 (2004), 213-257. · Zbl 1060.14034
[13] P. Hacking and Y. Prokhorov, Smoothable del Pezzo surfaces with quotient singularities , Compos. Math. 146 (2010), 169-192. · Zbl 1194.14054
[14] R. Hartshorne, Algebraic Geometry , Grad. Texts in Math. 52 , Springer, New York, 1977. · Zbl 0367.14001
[15] R. Hartshorne, Stable reflexive sheaves , Math. Ann. 254 (1980), 121-176. · Zbl 0431.14004
[16] R. Hartshorne, Deformation Theory , Grad. Texts in Math. 257 , Springer, New York, 2010. · Zbl 1186.14004
[17] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves , Aspects Math. E31 , Friedr. Vieweg, Braunschweig, 1997. · Zbl 0872.14002
[18] L. Illusie, Complexe cotangent et déformations, I , Lecture Notes in Math. 239 , Springer, Berlin, 1971. · Zbl 0224.13014
[19] Y. Kawamata, “Moderate degenerations of algebraic surfaces” in Complex Algebraic Varieties (Bayreuth, 1990) , Lecture Notes in Math. 1507 , Springer, Berlin, 1992, 113-132. · Zbl 0774.14032
[20] J. Kollár, Einstein metrics on five-dimensional Seifert bundles , J. Geom. Anal. 15 (2005), 445-476. · Zbl 1082.53041
[21] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties , Cambridge Tracts in Math. 134 , Cambridge Univ. Press, Cambridge, 1998.
[22] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities , Invent. Math. 91 (1988), 299-338. · Zbl 0642.14008
[23] S. A. Kuleshov and D. O. Orlov, Exceptional sheaves on Del Pezzo surfaces (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 53-87; English translation in Russ. Acad. Sci. Izv. Math. 44 (1995), 479-513. · Zbl 0842.14009
[24] Y. Lee and J. Park, A simply connected surface of general type with \(p_{g}=0\) and \(K^{2}=2\) , Invent. Math. 170 (2007), 483-505. · Zbl 1126.14049
[25] E. J. N. Looijenga, Isolated Singular Points on Complete Intersections , London Math. Soc. Lecture Note Ser. 77 , Cambridge Univ. Press, Cambridge, 1984. · Zbl 0552.14002
[26] M. Manetti, Normal degenerations of the complex projective plane , J. Reine Angew. Math. 419 (1991), 89-118. · Zbl 0719.14023
[27] A. N. Rudakov, Markov numbers and exceptional bundles on \(\mathbb{P}^{2}\) (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 52 (1988), no. 1, 100-112; English translation in Math. USSR-Izv. 32 (1989), no. 1, 99-112. · Zbl 0661.14017
[28] J. Wahl, Smoothings of normal surface singularities , Topology 20 (1981), 219-246. · Zbl 0484.14012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.