Wan, James; Zudilin, Wadim Generating functions of Legendre polynomials: a tribute to Fred Brafman. (English) Zbl 1282.33015 J. Approx. Theory 170, 198-213 (2013). This is a reprint of an article (with the same title and content) by these authors, that appeared in [ibid. 164, No. 4, 488–503 (2012; Zbl 1242.33018)]. Reviewer: Marcel G. de Bruin (Haarlem) Cited in 1 Document MSC: 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 11B83 Special sequences and polynomials 65Q30 Numerical aspects of recurrence relations Keywords:Legendre polynomial; Brafman’s generating function; hypergeometric series; Clausen’s identity; Apeéry-like sequence; modular function; \(\pi\) Citations:Zbl 1242.33018 PDF BibTeX XML Cite \textit{J. Wan} and \textit{W. Zudilin}, J. Approx. Theory 170, 198--213 (2013; Zbl 1282.33015) Full Text: DOI References: [1] Almkvist, G.; van Straten, D.; Zudilin, W., Generalizations of Clausen’s formula and algebraic transformations of Calabi-Yau differential equations, Proc. Edinb. Math. Soc., 54, 2, 273-295 (2011) · Zbl 1223.33007 [2] Bailey, W. N., (Generalized Hypergeometric Series. Generalized Hypergeometric Series, Cambridge Math. Tracts, vol. 32 (1935), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), second reprinted ed., Stechert-Hafner, New York, London, 1964 · JFM 61.0406.01 [3] Baruah, N. D.; Berndt, B. C., Eisenstein series and Ramanujan-type series for \(1 / \pi \), Ramanujan J., 23, 1-3, 17-44 (2010) · Zbl 1204.33005 [4] Borwein, J. M.; Straub, A.; Wan, J.; Zudilin, W., With an appendix by D. Zagier, Densities of short uniform random walks, Canad. J. Math., 64, 961-990 (2012) · Zbl 1296.33011 [5] Brafman, F., Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc., 2, 942-949 (1951) · Zbl 0044.07602 [6] Brafman, F., Generating functions and associated Legendre polynomials, Q. J. Math. (Oxford), 10, 2, 156-160 (1959) · Zbl 0087.28203 [7] Chan, H. H.; Cooper, S., Rational analogues of Ramanujan’s series for \(1 / \pi \), Math. Proc. Cambridge Philos. Soc., 153, 361-383 (2012) · Zbl 1268.11165 [8] Chan, H. H.; Tanigawa, Y.; Yang, Y.; Zudilin, W., New analogues of Clausen’s identities arising from the theory of modular forms, Adv. Math., 228, 2, 1294-1314 (2011) · Zbl 1234.33009 [10] Clausen, T., Ueber die Fälle wenn die Reihe \(y = 1 + \frac{\alpha \beta}{1 \cdot \gamma} x + \cdots\) ein quadrat von der Form \(y = 1 + \frac{\alpha^\prime \beta^\prime \gamma^\prime}{1 \cdot \delta^\prime \epsilon^\prime} x + \cdots\) hat, J. Math., 3, 89-95 (1828) [11] Ramanujan, S., Modular equations and approximations to \(\pi \), Q. J. Math. (Oxford), 45, 350-372 (1914) · JFM 45.1249.01 [12] Srivastava, H. M., An equivalence theorem on generating functions, Proc. Amer. Math. Soc., 52, 159-165 (1975) · Zbl 0311.33014 [14] Zagier, D., Integral solutions of Apéry-like recurrence equations, (Groups and Symmetries: From Neolithic Scots to John McKay. Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proc. Lecture Notes, vol. 47 (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 349-366 · Zbl 1244.11042 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.