zbMATH — the first resource for mathematics

Mathematical methods for studying discontinuous solutions of nonlinear hyperbolic systems of equations. (Математические методы изучения разрывных решений нелинейных гиперболических систем уравнений.) (Russian) Zbl 1282.35002
Lektsionnye Kursy NOTs 16. Moskva: Matematicheskiĭ Institut im. V. A. Steklova, RAN (ISBN 5-98419-037-X/pbk). 120 p. (2010).
These lectures concern first-order hyperbolic systems in one space dimension. The main topics are well-posedness of initial-boundary value problems, discontinuous solutions, properties and structure of the discontinuities, non-uniqueness caused by the discontinuities and applications in continuum mechanics.

35-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to partial differential equations
35L40 First-order hyperbolic systems
35L67 Shocks and singularities for hyperbolic equations
35D30 Weak solutions to PDEs
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
Full Text: DOI Link