×

The linear span of projections in AH algebras and for inclusions of \(C^\ast\)-algebras. (English) Zbl 1282.46057

Summary: In the first part of this paper, we show that an AH-algebra \(A = {\displaystyle \lim_\rightarrow}(A_i, \phi_i)\) has the LP property if and only if every element of the centre of \(A_i\) belongs to the closure of the linear span of projections in \(A\). As a consequence, a diagonal AH-algebra has the LP property if it has small eigenvalue variation in the sense of Bratteli and Elliott. The second contribution of this paper is that, for an inclusion of unital \(C^\ast\)-algebras \(P \subset A\) with a finite Watatani index, if a faithful conditional expectation \(E : A \to P\) has the Rokhlin property in the sense of Kodaka et al., then \(P\) has the LP property under the condition that \(A\) has the LP property. As an application, let \(A\) be a simple unital \(C^\ast\)-algebra with the LP property, \(\alpha\) an action of a finite group \(G\) onto \(\text{Aut}(A)\). If \(\alpha\) has the Rokhlin property in the sense of Izumi, then the fixed point algebra \(A^G\) and the crossed product algebra \(A \rtimes_\alpha G\) have the LP property. We also point out that there is a symmetry on the CAR algebra such that its fixed point algebra does not have the LP property.

MSC:

46L35 Classifications of \(C^*\)-algebras
46L55 Noncommutative dynamical systems

References:

[1] Pedersen, G. K., The linear span of projections in simple \(C^*\)-algebras, Journal of Operator Theory, 4, 2, 289-296 (1980) · Zbl 0495.46040
[2] Blackadar, B.; Bratteli, O.; Elliott, G. A.; Kumjian, A., Reduction of real rank in inductive limits of \(C^*\)-algebras, Mathematische Annalen, 292, 1, 111-126 (1992) · Zbl 0738.46027 · doi:10.1007/BF01444612
[3] Bratteli, O.; Elliott, G. A., Small eigenvalue variation and real rank zero, Pacific Journal of Mathematics, 175, 1, 47-59 (1996) · Zbl 0865.46039
[4] Elliott, G. A.; Ho, T. M.; Toms, A. S., A class of simple \(C^*\)-algebras with stable rank one, Journal of Functional Analysis, 256, 2, 307-322 (2009) · Zbl 1184.46059 · doi:10.1016/j.jfa.2008.08.001
[5] Ho, T. M., On the property SP of certain AH algebras, Comptes Rendus Mathématiques de l’Académie des Sciences. La Société Royale du Canada, 29, 3, 81-86 (2007) · Zbl 1171.46040
[6] Goodearl, K. R., Notes on a class of simple \(C^*\)-algebras with real rank zero, Publicacions Matemàtiques, 36, 2, 637-654 (1992) · Zbl 0812.46052 · doi:10.5565/PUBLMAT_362A92_23
[7] Toms, A. S.; Winter, W., The Elliott conjecture for Villadsen algebras of the first type, Journal of Functional Analysis, 256, 5, 1311-1340 (2009) · Zbl 1184.46061 · doi:10.1016/j.jfa.2008.12.015
[8] Toms, A. S., On the classification problem for nuclear \(C^*\)-algebras, Annals of Mathematics. Second Series, 167, 3, 1029-1044 (2008) · Zbl 1181.46047 · doi:10.4007/annals.2008.167.1029
[9] Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, Journal of Algebra, 38, 1, 29-44 (1976) · Zbl 0323.46063 · doi:10.1016/0021-8693(76)90242-8
[10] Elliott, G. A.; Gong, G., On the classification of \(C^*\)-algebras of real rank zero. II, Annals of Mathematics. Second Series, 144, 3, 497-610 (1996) · Zbl 0867.46041 · doi:10.2307/2118565
[11] Elliott, G. A.; Gong, G.; Li, L., On the classification of simple inductive limit \(C^*\)-algebras. II. The isomorphism theorem, Inventiones Mathematicae, 168, 2, 249-320 (2007) · Zbl 1129.46051 · doi:10.1007/s00222-006-0033-y
[12] Blackadar, B.; Dădărlat, M.; Rørdam, M., The real rank of inductive limit \(C^*\)-algebras, Mathematica Scandinavica, 69, 2, 267-276 (1991)
[13] Kadison, R. V., Diagonalizing matrices, American Journal of Mathematics, 106, 6, 1451-1468 (1984) · Zbl 0585.46048 · doi:10.2307/2374400
[14] Brown, L. G.; Pedersen, G. K., \(C^*\)-algebras of real rank zero, Journal of Functional Analysis, 99, 1, 131-149 (1991) · Zbl 0776.46026 · doi:10.1016/0022-1236(91)90056-B
[15] Elliott, G. A., A classification of certain simple \(C^*\)-algebras, Quantum and Non-Commutative Analysis (Kyoto, 1992). Quantum and Non-Commutative Analysis (Kyoto, 1992), Mathematical Physics Studies, 16, 373-385 (1993), Dodrecht, The Netherlands: Kluwer Academic Publishers, Dodrecht, The Netherlands · Zbl 0843.46045
[16] Thomsen, K., Inductive limits of interval algebras: the tracial state space, American Journal of Mathematics, 116, 3, 605-620 (1994) · Zbl 0814.46050 · doi:10.2307/2374993
[17] Watatani, Y., Index for C*-Subalgebras. Index for C*-Subalgebras, Memoirs of the American Mathematical Society (1990), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0697.46024
[18] Izumi, M., Finite group actions on \(C^*\)-algebras with the Rohlin property. I, Duke Mathematical Journal, 122, 2, 233-280 (2004) · Zbl 1067.46058 · doi:10.1215/S0012-7094-04-12221-3
[19] Kodaka, K.; Osaka, H.; Teruya, T., The Rohlin property for inclusions of C*-algebras with a finite Watatani index, Contemporary Mathematics, 503, 177-195 (2009) · Zbl 1194.46095
[20] Osaka, H.; Teruya, T., Strongly self-absorbing property for inclusions of C*-algebras with a finite Watatani index · Zbl 1294.46060
[21] Jeong, J. A.; Park, G. H., Saturated actions by finite-dimensional Hopf* -algebras on \(C^*\)-algebras, International Journal of Mathematics, 19, 2, 125-144 (2008) · Zbl 1154.46031 · doi:10.1142/S0129167X08004583
[22] Osaka, H.; Phillips, N. C., Crossed products by finite group actions with the Rokhlin property, Mathematische Zeitschrift, 270, 1-2, 19-42 (2012) · Zbl 1244.46032 · doi:10.1007/s00209-010-0784-4
[23] Phillips, N. C., The tracial Rokhlin property for actions of finite groups on \(C^*\)-algebras, American Journal of Mathematics, 133, 3, 581-636 (2011) · Zbl 1225.46049 · doi:10.1353/ajm.2011.0016
[24] Hirshberg, I.; Winter, W., Rokhlin actions and self-absorbing \(C^*\)-algebras, Pacific Journal of Mathematics, 233, 1, 125-143 (2007) · Zbl 1152.46056 · doi:10.2140/pjm.2007.233.125
[25] Pasnicu, C.; Phillips, C. N., Permanence properties for crossed products and fixed point algebras of finite groups · Zbl 1316.46050
[26] Echterhoff, S.; Lück, W.; Phillips, N. C.; Walters, S., The structure of crossed products of irrational rotation algebras by finite subgroups of \(\operatorname{ SL }_2(Z)\), Journal für die Reine und Angewandte Mathematik, 639, 173-221 (2010) · Zbl 1202.46081 · doi:10.1515/CRELLE.2010.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.