×

zbMATH — the first resource for mathematics

Fuglede-Kadison determinants for operators in the von Neumann algebra of an equivalence relation. (English) Zbl 1282.47061
Let \((X,\mathcal B,\mu)\) be a Borel standard probability space without atoms, \(\{A_i\}_{i\in I}\) and \(\{B_i\}_{i\in I}\) be two families of measurable subsets of \(X\), and \(\Lambda=\{g_i:A_i\to B_i\mid i\in I\}\) be a family of measure preserving bijections, where the index set \(I\) is at most countable. Let \(\mathcal R_{\Lambda}\) be the equivalence relation generated by the \(g_i\); i.e., \((x,y)\in\mathcal R_{\Lambda}\) if and only if \(x=y\) or there exists a map \(\omega=g_{i_1}^{\epsilon_1}g_{i_2}^{\epsilon_2}\dots g_{i_k}^{\epsilon_k}\) such that the domain of \(\omega\) contains \(x\) and \(\omega x=y\), where all exponents \(\epsilon_i=\pm 1\). By the Feldman-Moore construction [J. Feldman and C. C. Moore, Trans. Am. Math. Soc. 234, No. 2, 289–324 (1977; Zbl 0369.22009); ibid., 325–359 (1977; Zbl 0369.22010)], it is known that the von Neumann algebra \(\mathcal M(\mathcal R_{\Lambda})\) generated by \(L_{g}\)(\(g\in\Lambda)\)) and \(M_f\)(\(f\in L^{\infty}(X)\)) on \(L^2(\mathcal R_{\Lambda})\) is a \(II_1\)-factor if \(\mathcal R_{\Lambda}\) is ergodic and (SP1). The authors in this paper calculate the Fuglede-Kadison determinant for operators of the form \(\sum_{i=1}^n M_{f_i}L_{g_i}\) under some restrictions.
Reviewer: Guoxing Ji (Xian)

MSC:
47C15 Linear operators in \(C^*\)- or von Neumann algebras
47A35 Ergodic theory of linear operators
47B47 Commutators, derivations, elementary operators, etc.
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Lewis Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 703 – 718. · Zbl 1234.37010 · doi:10.1017/S0143385710000179 · doi.org
[2] John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. · Zbl 0706.46003
[3] Christopher Deninger, Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents, J. Reine Angew. Math. 651 (2011), 165 – 185. · Zbl 1220.46038 · doi:10.1515/CRELLE.2011.012 · doi.org
[4] Christopher Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), no. 3, 737 – 758. · Zbl 1104.22010
[5] Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289 – 324. , https://doi.org/10.1090/S0002-9947-1977-0578656-4 Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325 – 359. · Zbl 0369.22009
[6] Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289 – 324. , https://doi.org/10.1090/S0002-9947-1977-0578656-4 Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325 – 359. · Zbl 0369.22009
[7] Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520 – 530. · Zbl 0046.33604 · doi:10.2307/1969645 · doi.org
[8] Damien Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), no. 1, 41 – 98 (French, with English summary). · Zbl 0939.28012 · doi:10.1007/s002229900019 · doi.org
[9] Uffe Haagerup and Hanne Schultz, Invariant subspaces for operators in a general \?\?\(_{1}\)-factor, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 19 – 111. · Zbl 1178.46058 · doi:10.1007/s10240-009-0018-7 · doi.org
[10] David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501 – 558. · Zbl 1417.37041 · doi:10.1007/s00222-011-0324-9 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.