Grama, Ion; Spokoiny, Vladimir Statistics of extremes by oracle estimation. (English) Zbl 1282.62131 Ann. Stat. 36, No. 4, 1619-1648 (2008). Summary: We use the fitted Pareto law to construct an accompanying approximation of the excess distribution function. A selection rule of the location of the excess distribution function is proposed based on a stagewise lack-of-fit testing procedure. Our main result is an oracle type inequality for the Kullback-Leibler loss. Cited in 10 Documents MSC: 62G32 Statistics of extreme values; tail inference 62G08 Nonparametric regression and quantile regression 62G05 Nonparametric estimation Keywords:nonparametric adaptive estimation; extreme values; Hill estimator; probabilities of rare events; high quantiles × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Beirlant, J., Goegebeur, Yu., Segers, J. and Teugels, J. (2004). Statistics of Extremes. Theory and Applications . Wiley, Chichester. · Zbl 1070.62036 · doi:10.1002/0470012382 [2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge Univ. Press. · Zbl 0617.26001 [3] Danielsson, J., de Haan, L., Peng, L. and de Vries, C. G. (2001). Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivariate Anal. 76 226-248. · Zbl 0976.62044 · doi:10.1006/jmva.2000.1903 [4] Donoho, D. and Jonstone, J. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrica 81 425-455. JSTOR: · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425 [5] Drees, H. and Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Process. Appl. 75 149-172. · Zbl 0926.62013 · doi:10.1016/S0304-4149(98)00017-9 [6] Drees, H. (1998). Optimal rates of convergence for estimates of the extreme value index. Ann. Statist. 26 434-448. · Zbl 0934.62047 · doi:10.1214/aos/1030563992 [7] Embrechts, P., Klüppelberg, K. and Mikosch, T. (1997). Modelling Extremal Events . Springer, Berlin. · Zbl 0873.62116 [8] Gomes, M. I. and Oliveira, O. (2001). The bootstrap methodology in statistics of extremes-choice of the optimal sample fraction. Extremes 4 331-358. · Zbl 1023.62048 · doi:10.1023/A:1016592028871 [9] Grama, I. and Spokoiny, V. (2007). Pareto approximation of the tail by local exponential modeling. Bul. Acad. Ştiinţe Republ. Mold. Mat. 1 3-24. · Zbl 1122.62035 [10] Hall, P. (1982). On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser. B 44 37-42. JSTOR: · Zbl 0521.62024 [11] Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. J. Multivariate Anal. 32 177-203. · Zbl 0722.62030 · doi:10.1016/0047-259X(90)90080-2 [12] Hall, P. and Welsh, A. H. (1984). Best attainable rates of convergence for estimates of parameters of regular variation. Ann. Statist. 12 1079-1084. · Zbl 0539.62048 · doi:10.1214/aos/1176346723 [13] Hall, P. and Welsh, A. H. (1985). Adaptive estimates of regular variation. Ann. Statist. 13 331-341. · Zbl 0605.62033 · doi:10.1214/aos/1176346596 [14] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163-1174. · Zbl 0323.62033 · doi:10.1214/aos/1176343247 [15] Huisman, R., Koedijk, K. G., Kool, C. J. M. and Palm, F. (2001). Tail-index estimates in small samples. J. Bus. Econom. Statist. 19 208-216. JSTOR: [16] Lepski, O. V. (1990). One problem of adaptive estimation in Gaussian white noise. Teor. Veroyatnost. i Primenen. 35 459-470. · Zbl 0725.62075 [17] Lepski, O. V. and Spokoiny, V. G. (1995). Local adaptation to inhomogeneous smoothness: Resolution level. Math. Methods Statist. 4 239-258. · Zbl 0836.62030 [18] Mason, D. (1982). Laws of large numbers for sums of extreme values. Ann. Probab. 10 754-764. · Zbl 0493.60039 · doi:10.1214/aop/1176993783 [19] Reiss, R.-D. (1989). Approximate Distributions of Order Statistics : With Applications to Nonparametric Statistics . Springer, New York. · Zbl 0682.62009 [20] Resnick, S. I. (1997). Heavy tail modelling and teletraffic data. Ann. Statist. 25 1805-1869. · Zbl 0942.62097 · doi:10.1214/aos/1069362376 [21] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc. 73 812-815. · Zbl 0397.62034 · doi:10.2307/2286285 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.