×

A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models. (English) Zbl 1282.62168

Summary: The conditional Akaike information criterion, AIC, has been frequently used for model selection in linear mixed models. We develop a general framework for the calculation of the conditional AIC for different exponential family distributions. This unified framework incorporates the conditional AIC for the Gaussian case, gives a new justification for Poisson distributed data and yields a new conditional AIC for exponentially distributed responses but cannot be applied to the binomial and gamma distributions. The proposed conditional Akaike information criteria are unbiased for finite samples, do not rely on a particular estimation method and do not assume that the variance-covariance matrix of the random effects is known. The theoretical results are investigated in a simulation study. The practical use of the method is illustrated by application to a data set on tree growth.

MSC:

62J12 Generalized linear models (logistic models)
62J07 Ridge regression; shrinkage estimators (Lasso)
62B10 Statistical aspects of information-theoretic topics
65C60 Computational problems in statistics (MSC2010)

Software:

gamair; SemiPar
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Akaike, H. (1973)., Information theory and an extension of the maximum likelihood principle . 2nd International Symposium on Information Theory 267-281. · Zbl 0283.62006
[2] Boehner, J., McCloy, K. R. & Strobl, J. (2006)., SAGA - Analysis and Modelling Applications . Goettinger Geographische Abhandlungen 115 , 130.
[3] Breslow, N. E. & Clayton, D. G. (1993)., Approximate inference in generalized linear mixed models . Journal of the American Statistical Association 88 , 9-25. · Zbl 0775.62195
[4] Butler-Manning, D. (2008)., Stand structure, gap dynamics and regeneration of a semi-natural mixed beech forest on limestone in central Europe: A case study . PhD thesis, Universität Freiburg, Forstwissenschaftliche Fakultät .
[5] Chen, L. H. Y. (1975)., Poisson approximation for dependent trials . The Annals of Probability 3 , 534-545. · Zbl 0335.60016
[6] Donohue, M. C., Overholser, R., Xu, R. & Vaida, F. (2010)., Conditional Akaike information under generalized linear and proportional hazards mixed models . Biometrika 98 , 685-700. · Zbl 1231.62138
[7] Eilers, P. H. C. & Marx, B. D. (1996)., Flexible smoothing with B-splines and penalties . Statistical Science 2 , 89-121. · Zbl 0955.62562
[8] Greven, S. & Kneib, T. (2010)., On the behaviour of marginal and conditional AIC in linear mixed models . Biometrika 97 , 773-789. · Zbl 1204.62114
[9] Hodges, J. S. & Sargent, D. J. (2001)., Counting degrees of freedom in hierarchical and other richly-parameterised models . Biometrika 88 , 367-379. · Zbl 0984.62045
[10] Hudson, H. M. (1978)., A natural identity for exponential families with applications in multiparameter estimation . The Annals of Statistics 6 , 473-484. · Zbl 0391.62006
[11] Hurvich, C. M. & Sargent, C.-L. (1989)., Regression and time series model selection in small samples . Biometrika 76 , 297-307. · Zbl 0669.62085
[12] Lian, H. (2011)., A note on conditional Akaike information for Poisson regression with random effects . Electronic Journal of Statistics 6 , 1-9. · Zbl 1334.62140
[13] Liang, H., Wu, H. & Zou, G. (2008)., A note on conditional AIC for linear mixed-effects models . Biometrika 95 , 773-778. · Zbl 1437.62527
[14] McGilchrist, C. A. (1994)., Estimation in generalized mixed models . Journal of the Royal Statistical Society. Series B (Methodological) 56 , 61-69. · Zbl 0800.62433
[15] Nelder, J. A. & Wedderburn, R. W. M. (1972)., Generalized linear models . Journal of the Royal Statistical Society, Series A, General 135 , 370-384.
[16] Ruppert, D., Wand, M. & Carroll, R. (2003)., Semiparametric Regression . Cambridge University Press: New York, 2003 · Zbl 1038.62042
[17] Saefken, B., Kneib, T., van Waveren, C.-S. & Greven, S. (2014). Supplements to “A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models.” DOIs: 10.1214/14-EJS881SUPPA, 10.1214/14-EJS881SUPPB. · Zbl 1282.62168
[18] Shen, X. & Huang, H.-C. (2006)., Optimal model assessment, selection, and combination . Journal of the American Statistical Association 474 , 554-568. · Zbl 1119.62306
[19] Stein, C. (1972)., A Bound for the Error in the Normal Approximation to the Distribution of a Sum of Dependent Random Variables . Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability 2 , 586-602. · Zbl 0278.60026
[20] Vaida, F. & Blanchard, S. (2005)., Conditional Akaike information for mixed-effects models . Biometrika 92 , 351-370. · Zbl 1094.62077
[21] Wood, S. N. (2006)., Generalized Additive Models: An Introduction with R . Chapman and Hall/CRC · Zbl 1087.62082
[22] Yu, D. & Yau, K. K. W. (2012)., Conditional Akaike information criterion for generalized linear mixed models . Computational Statistics & Data Analysis 56 , 629-644. · Zbl 1239.62087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.