×

zbMATH — the first resource for mathematics

A transfer function approach to the realisation problem of nonlinear systems. (English) Zbl 1282.93078
Summary: This article studies the nonlinear realisation problem, i.e. the problem of finding the state equations of a nonlinear system from the transfer function representation being easily computable from the higher order input-output differential equation. The realisation in both observer and controller canonical forms is studied. The results demonstrate a clear connection with those from linear theory. In the solution the concept of adjoint polynomials, adjoint transfer function and right factorisation of the transfer function play a key role. Finally, the results are applied for system linearisation up to input-output injection used in the observer design.

MSC:
93B15 Realizations from input-output data
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s10958-005-0449-8 · Zbl 1127.16302
[2] Bueso J, Applications to Quantum Groups (2003)
[3] Conte G, Theory and Applications, 2. ed. (2007)
[4] DOI: 10.1007/BFb0042209
[5] DOI: 10.1080/00207179508921576 · Zbl 0853.93031
[6] DOI: 10.1109/9.376115 · Zbl 0832.93015
[7] Delaleau E, Journal of Mathematical Systems Estimation and Control 5 pp 1– (1995)
[8] DOI: 10.1007/BF02551378 · Zbl 0727.93025
[9] DOI: 10.1016/0024-3795(94)90212-7 · Zbl 0802.93010
[10] DOI: 10.1080/00207179508921959 · Zbl 0838.93022
[11] DOI: 10.1109/TAC.1978.1101693 · Zbl 0376.93024
[12] DOI: 10.1007/BFb0043027
[13] Glad T, Multivariable and Nonlinear Methods (2000)
[14] DOI: 10.1109/9.489283 · Zbl 0851.93018
[15] DOI: 10.1016/j.automatica.2007.09.008 · Zbl 1283.93077
[16] DOI: 10.1007/978-3-642-02897-7_10
[17] Halás M, in Proceedings of the Estonian Academy of Sciences: Series Physics and Mathematics 56 pp 322– (2007)
[18] Halás M, In 8Th IFAC Symposium NOLCOS (2010)
[19] DOI: 10.2307/1970810 · Zbl 0179.34302
[20] Kailath T, Linear Systems (1980)
[21] DOI: 10.1016/0016-0032(76)90078-8 · Zbl 0346.93010
[22] DOI: 10.3166/ejc.11.185-193 · Zbl 1293.93175
[23] DOI: 10.1016/0167-6911(83)90037-3 · Zbl 0524.93030
[24] DOI: 10.1137/0323016 · Zbl 0569.93035
[25] Li Z, In International Symposium on Symbolic and Algebraic Computation (2008)
[26] DOI: 10.2307/1968245 · Zbl 0001.26601
[27] DOI: 10.2307/1968173 · Zbl 0007.15101
[28] Perdon A, in 7th IFAC Symposium NOLCOS (2007)
[29] Pommaret JF, Comptes Rendus de l’Academie des Sciences Paris 302 pp 547– (1986)
[30] DOI: 10.1007/BF01704916 · Zbl 0624.93015
[31] Van der Schaft A, In 1st IFAC Symposium NOLCOS (1989)
[32] DOI: 10.1137/0327011 · Zbl 0667.93014
[33] Zhang J, Kybernetika 46 pp 799– (2010)
[34] Zheng Y, Journal of East China Normal University (Natural Science) 2 pp 15– (1995)
[35] DOI: 10.1109/9.964691 · Zbl 1175.93045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.