×

Selective survey on subset combinatorics of groups. (English. Ukrainian original) Zbl 1283.20029

J. Math. Sci., New York 174, No. 4, 486-514 (2011); translation from Ukr. Mat. Visn. 7, No. 2, 220-257 (2010).
Summary: We survey recent results concerning the combinatorial size of subsets of groups. For a cardinal \(\kappa\), according to its arrangement in a group \(G\), a subset of \(G\) is distinguished as \(\kappa\)-large, \(\kappa\)-small, \(\kappa\)-thin, \(\kappa\)-thick, and \(P_\kappa\)-small. By analogy with topology, there arise the following combinatorial cardinal invariants of a group: density, cellularity, resolvability, spread, etc. The paper consists of 7 sections: Ballean context, Amenability, Ideals, Partitions, Packings, Around thin subsets, and Colorings.

MSC:

20F05 Generators, relations, and presentations of groups
22A05 Structure of general topological groups
54H11 Topological groups (topological aspects)
05B40 Combinatorial aspects of packing and covering
43A07 Means on groups, semigroups, etc.; amenable groups

References:

[1] T. Banakh and N. Lyaskovska, ”Weakly P-small not P-small subsets in groups,” Int. J. Alg. Comput., 18, 1–6 (2008). · Zbl 1190.20036 · doi:10.1142/S0218196708004263
[2] T. Banakh and N. Lyaskovska, ”Completeness of translation invariant ideals in groups,” Ukr. Math. J., (to appear). · Zbl 1240.22001
[3] T. Banakh and N. Lyaskovska, and D. Repovš, ”Packing index of subsets in Polish groups,” Notre Dame J. Formal Logic, 50:4, 453–468 (2009). · Zbl 1203.03066 · doi:10.1215/00294527-2009-021
[4] T. Banakh, O. Petrenko, and I. Protasov, ”Kaleidoscopical configurations,” manuscript. · Zbl 1243.05060
[5] T. Banakh and S. Pikhurko, ”A game characterization of limit-detecting sequences in locally compact G-space,” Math. Stud., 21, No. 2, 115–132 (1999).
[6] T. O. Banakh and I. V. Protasov, ”Asymmetric colorings of Abelian groups,” Mat. Zam., 66, 17–30 (1999). · Zbl 1109.20309
[7] T. O. Banakh and I. V. Protasov, ”Symmetry and colorings: some results and open problems,” Izv. Gomel Univ., Vopr. Alg., 17, 4–15 (2001).
[8] T. Banakh, I. Protasov, and O. Verbitskiy, Symmetry and Colorings, monograph in preparation.
[9] A. Bella and V. Malykhin, ”Certain subsets of a group,” Quest. Answ. Gen. Topology, 17, 183–187 (1999). · Zbl 0966.54001
[10] T. Carlson, N. Hindman, J. McLeod, and D. Strauss, ”Almost disjoint large subsets of semigroups,” Topology Appl., 155, 433–444 (2008). · Zbl 1261.54026 · doi:10.1016/j.topol.2005.05.012
[11] C. Chou, ”On the size of the set of left invariant means on a semigroup,” Proc. Amer. Math. Soc., 23, 199–205 (1969). · Zbl 0188.19006
[12] W. W. Comfort and S. Garsia-Ferreira, ”Resolvability: a selective survey and some results,” Topology Appl., 74, 149–167 (1996). · Zbl 0866.54004 · doi:10.1016/S0166-8641(96)00052-1
[13] D. Dikranjan and I. Protasov, ”Every infinite group can be generated by P-small subset,” Appl. Gen. Topology, 7, 265–268 (2006). · Zbl 1112.20028
[14] D. Dikranjan and I. Protasov, ”Counting maximal topologies on countable groups and rings,” Topol. Appl., 156, 322–325 (2008). · Zbl 1171.54029 · doi:10.1016/j.topol.2008.07.009
[15] P. C. Eklof, Set Theoretical Methods in Homological Algebra and Abelian Group, Les Press de L’Univ. de Montreal, Montreal, 1980. · Zbl 0488.03029
[16] M. Filali, Ie. Lutsenko, and I. V. Protasov, ”Boolean group ideals and the ideal structure of {\(\beta\)}G,” Math. Stud., 31, 19–28 (2009). · Zbl 1199.22007
[17] M. Filali and I. V. Protasov, ”Spread of balleans,” Appl. Gen. Topology, 9, 161–175 (2008). · Zbl 1180.54008
[18] V. Gavrylkiv, Algebraic-Topological Structures on Superextensions, Dissertation, Lviv, 2009. · Zbl 1199.22005
[19] R. Graham, B. Rotschild, and J. Speneer, Ramsey Theory, Wiley, New York, 1980.
[20] F. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand, New York, 1966. · Zbl 0156.14401
[21] E. Hewitt, ”A problem in set-theoretical topology,” Duke Math. J., 10, 309–333 (1943). · Zbl 0060.39407 · doi:10.1215/S0012-7094-43-01029-4
[22] N. Hindman and D. Strauss, Algebra in the Stone- Čech Compactification – Theory and Applications,Walter de Gruyter, Berlin, New York, 1998. · Zbl 0918.22001
[23] Ie. Lutsenko, ”Thin systems of generators of groups,” Alg. Discrete Math., to appear. · Zbl 1258.20027
[24] Ie. Lutsenko and I. V. Protasov, ”Sparse, thin and other subsets of groups,” Int. J. Alg. Computation, 19, 491–510 (2009). · Zbl 1186.20024 · doi:10.1142/S0218196709005135
[25] Ie. Lutsenko and I. V. Protasov, ”Sketch of vector balleans,” Math. Stud., 31, 219–224 (2009). · Zbl 1199.46009
[26] Ie. Lutsenko and I. V. Protasov, ”Thin subsets of balleans,” manuscript. · Zbl 1199.46009
[27] N. Lyaskovska, ”Constructing subsets of given packing index in Abelian groups,” Acta Univ. Carolinae, Math. et Phis., 48, 69–80 (2007). · Zbl 1160.20315
[28] V. Malykhin and R. Moresko, ”Small generated groups,” Quest. Answ. Gen. Topology, 19, 47–53 (2001). · Zbl 1028.20027
[29] V. I. Malykhin and I. V. Protasov, ”Maximal resolvability of bounded groups,” Topol. Appl., 20, 1–6 (1996). · Zbl 0866.54032
[30] I. Prodanov, ”Some minimal group topologies are precompact,” Math. Ann., 227, 117–125 (1977). · Zbl 0343.22001 · doi:10.1007/BF01350188
[31] I. V. Protasov, ”Resolvability of {\(\tau\)} -bounded groups,” Math. Stud., 5, 17–20 (1995). · Zbl 0927.22001
[32] I. V. Protasov, ”Resolvability of groups,” Math. Stud., 9, 130–148 (1998). · Zbl 0936.22002
[33] I. V. Protasov, ”Partitions of groups onto large subsets,” Math. Notes, 73, 271–281 (2003). · Zbl 1080.20028 · doi:10.1023/A:1023238700405
[34] I. V. Protasov, ”Small systems of generators of groups,” Math. Notes, 76, 420–426 (2004). · Zbl 1072.58012 · doi:10.1023/B:MATN.0000043469.63097.c9
[35] I. V. Protasov, ”Resolvability of ball structures,” Appl. Gen. Topology, 5, 191–198 (2004). · Zbl 1062.54006
[36] I. V. Protasov, ”Cellularity and density of balleans,” Appl. Gen. Topology, 8, 283–291 (2007). · Zbl 1152.54312
[37] I. V. Protasov, ”Extraresolvability of balleans,” Comment. Math. Univ. Carolinae, 48, 161–175 (2007). · Zbl 1199.54033
[38] I. V. Protasov, ”Balleans of bounded geometry and G-spaces,” Math. Stud., 30, 61–66 (2008). · Zbl 1164.37301
[39] I. V. Protasov, ”Small subsets of groups,” Topology Appl., 156, 2651–2658 (2009). · Zbl 1189.20033 · doi:10.1016/j.topol.2009.04.011
[40] I. Protasov, ”Counting {\(\Omega\)}-ideals,” Alg. Universalis, 62, 339–343 (2010). · Zbl 1202.08003 · doi:10.1007/s00012-010-0032-0
[41] I. V. Protasov, Combinatorics of Numbers, Math. Stud. Monogr. Ser., Vol. 2, VNTL, Lviv, 1997. · Zbl 1102.05301
[42] I. Protasov and E. Zelenyuk, Topologies on Groups Determined by Sequence, Math. Stud. Monogr. Ser., Vol. 4, VNTL, Lviv, 1999. · Zbl 0977.54029
[43] I. Protasov and T. Banakh, Ball Structures and Colorings of Graphs and Groups, Math. Stud. Monogr. Ser., Vol. 11, VNTL, Lviv, 2003. · Zbl 1147.05033
[44] I. Protasov and M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
[45] I. Protasov and M. Filaly, Ultrafilters and Topologies on Groups, Math. Stud. Monorg. Ser., (to appear).
[46] I. V. Protasov and O. I. Protasova, ”Color-detectors of hypergraphs,” Alg. Discrete Math., No. 1, 91–98 (2005). · Zbl 1088.05034
[47] I. V. Protasov and O. I. Protasova, ”On closed ideals of {\(\beta\)}G,” Semigroup Forum, 75, 237–240 (2007). · Zbl 1127.22002 · doi:10.1007/s00233-006-0650-1
[48] J. Roe, Lectures on Coarse Geometry, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1042.53027
[49] W. Serediński, ”Some operations related to translations,” Colloq. Math., 57, 203–219 (1989).
[50] S. Solecki, ”Translation invariant ideals,” Israel J. Math., 135, 93–110 (2003). · Zbl 1053.28006 · doi:10.1007/BF02776051
[51] S. Solecki, ”Size of subsets of groups and Haar null sets,” GAFA, 15, 246–273 (2005). · Zbl 1079.43002
[52] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006.
[53] V. O. Vasil’eva and I. V. Protasov, ”Around van der Waerden’s Theorem,” U sviti mat., 17–19 (2000).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.