Deng, Donggao; Duong, Xuan Thinh; Sikora, Adam; Yan, Lixin Comparison of the classical BMO with the BMO spaces associated with operators and applications. (English) Zbl 1283.42036 Rev. Mat. Iberoam. 24, No. 1, 267-296 (2008). Summary: Let \(L\) be a generator of a semigroup satisfying the Gaussian upper bounds. A new BMO\(_L\) space associated with \(L\) was recently introduced in [15] and [16]. We discuss applications of the new BMO\(_L\) spaces in the theory of singular integration. For example we obtain BMO\(_L\) estimates and interpolation results for fractional powers, purely imaginary powers and spectral multipliers of self adjoint operators. We also demonstrate that the space BMO\(_L\) might coincide with or might be essentially different from the classical BMO space. Cited in 20 Documents MSC: 42B35 Function spaces arising in harmonic analysis 42B25 Maximal functions, Littlewood-Paley theory 47B38 Linear operators on function spaces (general) Keywords:BMO space; Hardy space; Dirichlet and Neumann Laplacians; semigroup; Gaussian bounds; fractional powers; purely imaginary powers; spectral multiplier PDF BibTeX XML Cite \textit{D. Deng} et al., Rev. Mat. Iberoam. 24, No. 1, 267--296 (2008; Zbl 1283.42036) Full Text: DOI arXiv Euclid EuDML References: [1] Alexopoulos, G.: Spectral multipliers for Markov chains. J. Math. Soc. Japan 56 (2004), no. 3, 833-852. · Zbl 1079.22006 [2] Auscher, P., Duong, X. T. and McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Preprint, 2004. [3] Auscher, P. and Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domain of \(\mathbb R^n\). J. Funct. Anal. 201 (2003), 148-184. · Zbl 1033.42019 [4] Auscher, P., Russ, E. and Tchamitchian, P.: Hardy Sobolev spaces on strongly Lipschitz domain of \(\mathbb R^n\). J. Funct. Anal. 218 (2005), 54-109. · Zbl 1073.46022 [5] Auscher, P. and Tchamitchian, P.: Square root problem for divergence operators and related topics . Astérisque 249 . Soc. Math. France, 1998. · Zbl 0909.35001 [6] Chang, D.-C., Krantz, S. G. and Stein, E. M.: \(H^p\) theory on a smooth domain in \(\mathbb R^N\) and elliptic boundary value problems. J. Funct. Anal. 114 (1993), 286-347. · Zbl 0804.35027 [7] Christ, M.: \(L^ p\) bounds for spectral multipliers on nilpotent groups. Trans. Amer. Math. Soc. 328 (1991), 73-81. · Zbl 0739.42010 [8] Coifman, R. and Weiss. G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569-645. · Zbl 0358.30023 [9] Coulhon, T. and Duong, X. T.: Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss. Adv. Differential Equations 5 (2000), 343-368. · Zbl 1001.34046 [10] Cowling, M. and Meda, S.: Harmonic analysis and ultracontractivity. Trans. Amer. Math. Soc. 340 (1993), 733-752. JSTOR: · Zbl 0798.47032 [11] Davies, E. B.: Heat kernels and spectral theory . Cambridge Tracts in Mathematics 92 . Cambridge Univ. Press, Cambridge, 1989. · Zbl 0699.35006 [12] Duong, X. T. and McIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoamericana 15 (1999), 233-265. · Zbl 0980.42007 [13] Duong, X. T., Ouhabaz, E. M. and Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), 443-485. · Zbl 1029.43006 [14] Duong, X. T., Ouhabaz, E. M. and Yan, L.: Endpoint estimates for Riesz transforms of magnetic Schrödinger operators. Ark. Mat. 44 (2006), 261-275. · Zbl 1172.35370 [15] Duong, X. T. and Yan, L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications. Comm. Pure Appl. Math. 58 (2005), 1375-1420. · Zbl 1153.26305 [16] Duong, X. T. and Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernels bounds. J. Amer. Math. Soc. 18 (2005), 943-973. · Zbl 1078.42013 [17] Duong, X. T. and Yan, L.: On commutators of fractional integrals. Proc. Amer. Math. Soc. 132 (2004), 3549-3557. · Zbl 1046.42005 [18] Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L. and Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249 (2005), 329-356. · Zbl 1136.35018 [19] Fefferman, C. and Stein, E. M.: \(H^p\) spaces of several variables. Acta Math. 129 (1972), 137-193. · Zbl 0257.46078 [20] Gunawan, H.: On weighted estimates for Stein’s maximal function. Bull. Austral. Math. Soc. 54 (1996), 35-39. · Zbl 0874.42013 [21] Hebisch, W.: A multiplier theorem for Schrödinger operators. Colloq. Math. 60 /61 (1990), no. 2, 659-664. · Zbl 0779.35025 [22] John, F. and Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426. · Zbl 0102.04302 [23] Martell, J. M.: Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia Math. 161 (2004), 113-145. · Zbl 1044.42019 [24] Mauceri, G. and Meda, S.: Vector-valued multipliers on stratified groups. Rev. Mat. Iberoamericana 6 (1990), 141-154. · Zbl 0763.43005 [25] McIntosh, A.: Operators which have an \(H_\infty\) functional calculus. In Miniconference on operator theory and partial differential equations (North Ryde, 1986) , 210-231. Proc. Centre Math. Anal. Austral. Nat. Univ. 14 . Austral. Nat. Univ., Canberra, 1986. · Zbl 0634.47016 [26] Müller, D. and Stein, E. M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. (9) 73 (1994), 413-440. · Zbl 0838.43011 [27] Sikora, A. and Wright, J.: Imaginary powers of Laplace operators. Proc. Amer. Math. Soc. 129 (2001), 1745-1754 JSTOR: · Zbl 0969.42007 [28] Stein, E. M.: Singular integral and differentiability properties of functions . Princeton Mathematical Series 30 . Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501 [29] Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals . Princeton Mathematical Series 43 . Princeton Univ. Press, 1993. · Zbl 0821.42001 [30] Strauss, W. A.: Partial differential equation: An introduction . John Wiley& Sons, Inc., New York, 1992. · Zbl 0817.35001 [31] Torchinsky, A.: Real-variable methods in harmonic analysis . Pure and Applied Mathematics 123 . Academic Press, Inc. Orlando, FL, 1986. · Zbl 0621.42001 [32] Triebel, H.: Theory of function spaces . Monographs in Mathematics 78 . Birkhauser verlag, Basel, Boston, Stuggart, 1983. · Zbl 0546.46027 [33] Uchiyama, A. and Wilson, J. M.: Approximate identities and \(H^1(\mathbb R)\). Proc. Amer. Math. Soc. 88 (1983), 53-58. JSTOR: · Zbl 0516.42027 [34] Varopoulos, N., Saloff-Coste, L. and Coulhon, T.: Analysis and geometry on groups . Cambridge Tracts in Mathematics 100 . Cambridge Univ. Press, London, 1992. · Zbl 0813.22003 [35] Weiss, G.: Some problems in the theory of Hardy spaces. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, 1978) , Part 1, 189-200. Proc. Sympos. Pure Math. 35 . Amer. Math. Soc., Providence, R.I., 1979. · Zbl 0417.30025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.