Krefl, Daniel; Schwarz, Albert Refined Chern-Simons versus Vogel universality. (English) Zbl 1283.58018 J. Geom. Phys. 74, 119-129 (2013). Summary: We study the relation between the partition function of refined \(\mathrm{SU}(N)\) and \(\mathrm{SO}(2N)\) Chern-Simons on the 3-sphere and the universal Chern-Simons partition function in the sense of Mkrtchyan and Veselov. We find a four-parameter generalization of the integral representation of universal Chern-Simons that includes refined \(\mathrm{SU}(N)\) and \(\mathrm{SO}(2N)\) Chern-Simons for special values of parameters. The large \(N\) expansion of the integral representation of refined \(\mathrm{SU}(N)\) Chern-Simons explicitly shows the replacement of the virtual Euler characteristic of the moduli space of complex curves with a refined Euler characteristic related to the radius deformed \(c = 1\) string free energy. Cited in 16 Documents MSC: 58J28 Eta-invariants, Chern-Simons invariants Keywords:refinement; Chern-Simons theory; topological strings × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Nekrasov, N. A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831 (2004) · Zbl 1056.81068 [2] Hollowood, T. J.; Iqbal, A.; Vafa, C., Matrix models, geometric engineering and elliptic genera, J. High Energy Phys., 0803, 069 (2008) [3] Iqbal, A.; Kozcaz, C.; Vafa, C., The refined topological vertex, J. High Energy Phys., 0910, 069 (2009) [4] Krefl, D.; Walcher, J., Extended holomorphic anomaly in gauge theory, Lett. Math. Phys., 95, 67 (2011), arXiv:1007.0263 [hep-th] · Zbl 1205.81118 [5] Krefl, D.; Walcher, J., Shift versus extension in refined partition functions, [hep-th] [6] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nuclear Phys. B, 405, 279 (1993) · Zbl 0908.58074 [7] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., 165, 311 (1994) · Zbl 0815.53082 [8] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys., 3, 1415 (1999) · Zbl 0972.81135 [9] Sinha, S.; Vafa, C., SO and Sp Chern-Simons at large \(N\) [10] Aganagic, M.; Shakirov, S., Knot homology from refined Chern-Simons theory, [hep-th] · Zbl 1322.81069 [11] Aganagic, M.; Shakirov, S., Refined Chern-Simons theory and knot homology, [hep-th] · Zbl 1322.81069 [12] Aganagic, M.; Schaeffer, K., Orientifolds and the refined topological string, J. High Energy Phys., 1209, 084 (2012), arXiv:1202.4456 [hep-th] · Zbl 1397.83118 [13] Mkrtchyan, R. L.; Veselov, A. P., Universality in Chern-Simons theory, J. High Energy Phys., 1208, 153 (2012), arXiv:1203.0766 [hep-th] · Zbl 1397.81326 [14] Mkrtchyan, R. L., Nonperturbative universal Chern-Simons theory, [hep-th] · Zbl 1342.81523 [15] Vogel, P., Algebraic structures on modules of diagrams, J. Pure Appl. Algebra, 215, 6, 1292-1339 (2011) · Zbl 1221.57015 [17] Goulden, I. P.; Harer, J. L.; Jackson, D. M., A geometric parametrization for the virtual Euler characteristic of the moduli space of real and complex algebraic curves, Trans. Amer. Math. Soc., 353, 4405 (2001) · Zbl 0981.58007 [18] Gross, D. J.; Klebanov, I. R., One-dimensional string theory on a circle, Nuclear Phys. B, 344, 475 (1990) [19] Gopakumar, R.; Vafa, C., \(M\) theory and topological strings, 1 [20] Krefl, D.; Walcher, J., ABCD of beta ensembles and topological strings, J. High Energy Phys., 1211, 111 (2012), arXiv:1207.1438 [hep-th] · Zbl 1397.81265 [21] Ooguri, H.; Vafa, C., World sheet derivation of a large \(N\) duality, Nuclear Phys. B, 641, 3 (2002) · Zbl 0998.81073 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.