×

Iwasawa theory for elliptic curves at supersingular primes: a pair of Main Conjectures. (English) Zbl 1284.11147

Let \(E/\mathbb Q\) be an elliptic curve and let \(p\) be a prime. The aim of the paper under review is to formulate a pair of main conjectures in the case, where \(p\) is a good supersingular prime, i.e. \(p\) divides \(a_p = p+1-|E(\mathbb F_p)|\).
When \(a_p = 0\), R. Pollack [Duke Math. J. 118, No. 3, 523–558 (2003; Zbl 1074.11061)] has constructed two \(p\)-adic \(L\)-functions \(L_p^{\pm}(E,X) \in \mathbb Z_p[[X]]\) such that (for \(p\) odd) \[ L_p(E,\alpha, X) = L_p^+(E,X) \mathrm{log}_p^+(1+X) + L_p^-(E,X) \mathrm{log}_p^-(1+X) \alpha \] for each root \(\alpha\) of the Hecke polynomial \(Y^2 - a_p Y + p\). Here \(\mathrm{log}_p^{\pm}\) are Pollack’s half-logarithms. Then S.-i. Kobayashi [Invent. Math. 152, No. 1, 1–36 (2003; Zbl 1047.11105)] has constructed two modified Selmer groups \(\mathrm{Sel}^{\pm}\) and has formulated a pair of main conjectures: each of Pollack’s \(L_p^{\pm}(E,X)\) should generate the characteristic ideal of the Pontryagin dual of \(\mathrm{Sel}^{\pm}\).
In this paper the author allows the case \(a_p \not=0\) as well (but note that the Hasse-Weil bound \(|a_p| \leq 2 \sqrt p\) then forces \(p=2\) or \(p=3\), and the former case is excluded in the last section of the paper, where the main conjecture is formulated). The key construction is that of two Coleman maps \(\mathrm{Col}^{\sharp}\) and \(\mathrm{Col}^{\flat}\) which generalize Kobayashi’s Coleman maps. These send K. Kato’s zeta elements [Astérisque 295, 117–290 (2004; Zbl 1142.11336)] to new \(p\)-adic \(L\)-functions \(L_p^{\sharp}(E,X)\) and \(L_p^{\flat}(E,X)\) which generalize Pollack’s \(p\)-adic \(L\)-functions. At least one of these two is nonzero, and conjecturally both are.
Now let \(p\) be an odd prime. The main conjecture then asserts that \(L_p^{\sharp}(E,X)\) and \(L_p^{\flat}(E,X)\) (when nonzero) generate the characteristic ideals of the Pontryagin dual of two modified Selmer groups \(\mathrm{Sel}^{\sharp}(E / \mathbb Q_{\infty})\) and \(\mathrm{Sel}^{\flat}(E / \mathbb Q_{\infty})\), respectively. When \(E\) does not have complex multiplication, and the \(p\)-adic representation \(Gal(\overline{\mathbb Q} / \mathbb Q) \rightarrow GL_{\mathbb Z_p}(T)\) on the automorphism group of the \(p\)-adic Tate module \(T\) is surjective, then the divisibility statement \[ (L_p^{\ast}(E,X)) \subseteq \mathrm{char}((\mathrm{Sel}^{\ast}(E/\mathbb Q_{\infty})^{\vee}) \] is proven, where \(\ast \in \{\sharp, \flat \}\) so that \(L_p^{\ast}(E,X) \not= 0\).
For an application on the asymptotic growth of the \(p\)-primary component of the Shafarevich-Tate group in the cyclotomic tower see F. Sprung [J. Reine Angew. Math. 681, 199–218 (2013; Zbl 1288.11060)].

MSC:

11R23 Iwasawa theory
11G05 Elliptic curves over global fields

References:

[1] Amice, Y.; Vélu, J., Distributions \(p\)-adiques associées aux séries de Hecke, Journées Arithmétiques de Bordeaux. Journées Arithmétiques de Bordeaux, Bordeaux, 1974. Journées Arithmétiques de Bordeaux. Journées Arithmétiques de Bordeaux, Bordeaux, 1974, Astérisque, 24-25, 119-131 (1975) · Zbl 0332.14010
[2] Bhargava, M.; Shankar, A., Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0 · Zbl 1317.11038
[3] Coates, J.; Greenberg, R., Kummer theory for abelian varieties over local fields, Invent. Math., 124, 1-3, 129-174 (1996) · Zbl 0858.11032
[4] Coates, J.; Sujatha, R., Galois Cohomology of Elliptic Curves, Tata Inst. Fund. Res. Stud. Math., vol. 88 (2000), Narosa Publishing House: Narosa Publishing House New Delhi · Zbl 0973.11059
[5] Colmez, P., Théorie dʼIwasawa des représentations de de Rham dʼun corps local, Ann. of Math., 148, 2, 485-571 (1998) · Zbl 0928.11045
[6] Elkies, N., The existence of infinitely many supersingular primes for every elliptic curve over \(Q\), Invent. Math., 89, 3, 561-567 (1987) · Zbl 0631.14024
[7] Hazewinkel, M., On norm maps for one dimensional formal groups I: The cyclotomic \(Γ\)-extension, J. Algebra, 32, 89-108 (1974) · Zbl 0288.12011
[8] Honda, T., On the theory of commutative formal groups, J. Math. Soc. Japan, 22, 213-246 (1970) · Zbl 0202.03101
[9] Iovita, A.; Pollack, R., Iwasawa theory of elliptic curves at supersingular primes over \(Z_p\)-extensions of number fields, J. Reine Angew. Math., 598, 71-103 (2006) · Zbl 1114.11053
[10] Kato, K., \(p\)-Adic Hodge theory and values of zeta functions of modular forms, Astérisque, 295, 117-290 (2004) · Zbl 1142.11336
[11] Kobayashi, S., Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., 152, 1, 1-36 (2003) · Zbl 1047.11105
[12] Kurihara, M., On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction I, Invent. Math., 149, 195-224 (2002) · Zbl 1033.11028
[13] Lazard, M., Les zéros des fonctions analytiques dʼune variable sur un corps valué complet, Publ. Math. Inst. Hautes Etudes Sci., 14, 47-75 (1962) · Zbl 0119.03701
[14] Lei, A., Iwasawa theory for modular forms at supersingular primes, Compos. Math., 147, 3, 803-838 (May 2011) · Zbl 1234.11148
[15] Lei, A.; Loeffler, D.; Zerbes, S., Wach modules and Iwasawa theory for modular forms, Asian J. Math., 14, 4, 475-528 (December 2010) · Zbl 1281.11095
[16] Mazur, B., Courbes elliptiques et symboles modulaires, (Séminaire Bourbaki 414, 1971/1972. Séminaire Bourbaki 414, 1971/1972, Lecture Notes in Math., vol. 317 (1972), Springer) · Zbl 0276.14012
[17] Mazur, B., Rational points of abelian varieties with values in towers of number fields, Invent. Math., 18, 183-266 (1972) · Zbl 0245.14015
[18] Mazur, B.; Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math., 25, 1-61 (1974) · Zbl 0281.14016
[19] Mazur, B.; Tate, J.; Teitelbaum, J., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84, 1-48 (1986) · Zbl 0699.14028
[20] Perrin-Riou, B., Fonctions L p-adiques des représentations \(p\)-adiques, Astérisque, 229 (1995), 198 pp · Zbl 0845.11040
[21] Pollack, R., The \(p\)-adic \(L\)-function of a modular form at a supersingular prime, Duke Math. J., 118, 3, 523-558 (2003) · Zbl 1074.11061
[22] Pollack, R., An algebraic version of a theorem of Kurihara, J. Number Theory, 110, 164-177 (2005) · Zbl 1143.11326
[23] Pollack, R.; Rubin, K., The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math., 159, 1, 447-464 (2004) · Zbl 1082.11035
[24] Rohrlich, D. E., On \(L\)-functions of elliptic curves and cyclotomic towers, Invent. Math., 75, 409-423 (1984) · Zbl 0565.14006
[25] Silverman, J. H., The Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 106 (1992), Springer: Springer New York
[26] C. Skinner, E. Urban, The Iwasawa main conjectures for \(\operatorname{GL}_2\); C. Skinner, E. Urban, The Iwasawa main conjectures for \(\operatorname{GL}_2\) · Zbl 1301.11074
[27] Višik, M. M., Nonarchimedean measures associated with Dirichlet series, Mat. Sb., 99 (141), 2, 248-260 (1976), 296 · Zbl 0358.14014
[28] Washington, L., Introduction to Cyclotomic Fields, Grad. Texts in Math., vol. 83 (1980), Springer: Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.