Arendarczyk, Marek; Dębicki, Krzysztof Asymptotics of supremum distribution of a Gaussian process over a Weibullian time. (English) Zbl 1284.60074 Bernoulli 17, No. 1, 194-210 (2011). Summary: Let {\(X(t) : t\in [0, \infty)\)} be a centered Gaussian process with stationary increments and variance function \(\sigma _{X}^{2}(t)\). We study the exact asymptotics of \(\operatorname{P}(\text{sup}_{t\in [0, T]}X(t)>u)\) as \(u\rightarrow \infty \), where \(T\) is an independent of \({X(t)}\) non-negative Weibullian random variable. As an illustration, we work out the asymptotics of the supremum distribution of fractional Laplace motion. Cited in 1 ReviewCited in 27 Documents MSC: 60G05 Foundations of stochastic processes 60G22 Fractional processes, including fractional Brownian motion 60G70 Extreme value theory; extremal stochastic processes Keywords:exact asymptotics; fractional Laplace motion; Gaussian process PDFBibTeX XMLCite \textit{M. Arendarczyk} and \textit{K. Dębicki}, Bernoulli 17, No. 1, 194--210 (2011; Zbl 1284.60074) Full Text: DOI arXiv References: [1] Abundo, M. (2008). Some remarks on the maximum of a one-dimensional diffusion process. Probab. Math. Statist. 28 107-120. · Zbl 1136.60356 [2] Adler, R.J. (1990). An introduction to continuity, extrema, and related topics for general Gaussian processes. In Inst. Math. Statist. Lecture Notes Monograph Series 12 . Hayward, CA: Inst. Math. Statist. · Zbl 0747.60039 [3] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular Variation . Cambridge: Cambridge Univ. Press. · Zbl 0617.26001 [4] Borst, S.C., De\ogonek bicki, K. and Zwart, A.P. (2004). The supremum of a Gaussian process over a random interval. Statist. Probab. Lett. 68 221-234. · Zbl 1072.60032 [5] Fedoryuk, M. (1977). The Saddle-Point Method . Moscow: Nauka. · Zbl 0463.41020 [6] Kozubowski, T.J., Meerschaert, M.M., Molz, F.J. and Lu, S. (2004). Fractional Laplace model for hydraulic conductivity. Geophys. Res. Lett. 31 1-4. L08501. [7] Kozubowski, T.J., Meerschaert, M.M. and Podgórski, K. (2006). Fractional Laplace motion. Adv. in Appl. Probab. 38 451-464. · Zbl 1100.60017 · doi:10.1239/aap/1151337079 [8] Piterbarg, V.I. and Prisyazhn’uk, V. (1978). Asymptotic behaviour of the probability of a large excursion for a non-stationary Gaussian process. Theory Probab. Math. Statist. 18 121-133. · Zbl 0407.60016 [9] Piterbarg, V.I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs 148 . Providence, RI: Amer. Math. Soc. · Zbl 0841.60024 [10] Talagrand, M. (1988). Small tails for the supremum of Gaussian process. Ann. Inst. H. Poincare Probab. Statist. 24 307-315. · Zbl 0641.60044 [11] Zwart, A.P., Borst, S.C. and De\ogonek bicki, K. (2005). Subexponential asymptotics of hybrid fluid and ruin models. Ann. Appl. Probab. 15 500-517. · Zbl 1079.60037 · doi:10.1214/105051604000000648 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.