Mimicking an Itō process by a solution of a stochastic differential equation. (English) Zbl 1284.60109

The authors construct a process that mimics certain properties of a given Itō process, but is simpler in the sense that the mimicking process is a weak solution to a stochastic differential equation, while the Itō process may have drift and diffusion terms that are themselves stochastic processes. The work is motivated by the problem of model calibration in finance. The requirements to the Itō process are reduced to its integrability, without any conditions of nondegeneracy and boundedness of the covariance. It is shown that the mimicking process can preserve the joint distribution of certain functionals of the Itō process (e.g., running maximum and running average) at each fixed time. To prove the main result, a weakly relatively compact sequence of processes that mimic some initial target process is constructed. It is proved that the mimicking property is preserved under weak convergence and the semimartingale characteristics of the limiting process are computed.


60G99 Stochastic processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J60 Diffusion processes
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI arXiv Euclid


[1] Albin, J. M. P. (2008). A continuous non-Brownian motion martingale with Brownian motion marginal distributions. Statist. Probab. Lett. 78 682-686. · Zbl 1137.60325 · doi:10.1016/j.spl.2007.09.031
[2] Antonov, A. and Misirpashaev, T. (2009). Markovian projection onto a displaced diffusion: Generic formulas with applications. Int. J. Theor. Appl. Finance 12 507-522. · Zbl 1178.91186 · doi:10.1142/S0219024909005300
[3] Bentata, A. and Cont, R. (2011). Mimicking the marginal distributions of a semimartingale. Available at . 0910.3992v3 · Zbl 1325.60115
[4] Brigo, D. and Mercurio, F. (2002). Displaced and mixture diffusions for analytically-tractable smile models. In Mathematical Finance-Bachelier Congress , 2000 ( Paris ) (H. Geman, D. Madan, S. R. Pliska and T. Vorst, eds.) 151-174. Springer, Berlin. · Zbl 1011.91052
[5] Brigo, D. and Mercurio, F. (2002). Lognormal-mixture dynamics and calibration to market volatility smiles. Int. J. Theor. Appl. Finance 5 427-446. · Zbl 1107.91324 · doi:10.1142/S0219024902001511
[6] Brunick, G. (2008). A weak existence result with application to the financial engineer’s calibration problem. Ph.D. dissertation, Dept. Math. Sciences, Carnegie Mellon Univ., Pittsburgh, PA.
[7] Brunick, G. (2013). Uniqueness in law for a class of degenerate diffusions with continuous covariance. Probab. Theory Related Fields 155 265-302. · Zbl 1268.60084 · doi:10.1007/s00440-011-0398-8
[8] Cox, A. M. G., Hobson, D. and Obłój, J. (2011). Time-homogeneous diffusions with a given marginal at a random time. ESAIM Probab. Stat. 15 S11-S24. · doi:10.1051/ps/2010021
[9] Dellacherie, C. and Meyer, P. A. (1978). Probability and Potential , Part I . North-Holland, New York. Translation of Probabilités et Potential , Hermann, Paris.
[10] Derman, E. and Kani, I. (1994). Riding on a smile. Risk 7 32-39.
[11] Derman, E. and Kani, I. (1998). Stochastic implied trees: Arbitrage pricing with stochastic term and strike structure of volatility. Int. J. Theor. Appl. Finance 1 61-110. · Zbl 0908.90009 · doi:10.1142/S0219024998000059
[12] Dupire, B. (1994). Pricing with a smile. Risk 7 18-20.
[13] Dupire, B. (1996). A unified theory of volatility. In Derivative Pricing : The Classic Collection , 2004 (P. Carr, ed.) 185-198. Risk Books, New York.
[14] Ekström, E., Hobson, D., Janson, S. and Tysk, J. (2013). Can time-homogeneous diffusions produce any distribution? Probab. Theory Related Fields 155 493-520. · Zbl 1276.60085 · doi:10.1007/s00440-011-0405-0
[15] Forde, M. (2011). A diffusion-type process with a given joint law for the terminal level and supremum at an independent exponential time. Stochastic Process. Appl. 121 2802-2817. · Zbl 1235.60107 · doi:10.1016/j.spa.2011.07.009
[16] Garsia, A. M. (1973). Martingale Inequalities : Seminar Notes on Recent Progress . Benjamin, Amsterdam. · Zbl 0284.60046
[17] Gatheral, J. (2006). The Volatility Surface : A Practitioner’s Guide . Wiley, Hoboken, NJ.
[18] Gyöngy, I. (1986). Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Related Fields 71 501-516. · Zbl 0579.60043 · doi:10.1007/BF00699039
[19] Hamza, K. and Klebaner, F. C. (2007). A family of non-Gaussian martingales with Gaussian marginals. J. Appl. Math. Stoch. Anal. Art. ID 92723, 19. · Zbl 1152.60039 · doi:10.1155/2007/92723
[20] Heston, S. (1993). A closed-form solution for options with stochastic volatility and applications to bond and currency options. Rev. Futures Markets 9 54-76. · Zbl 1384.35131
[21] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 288 . Springer, Berlin. · Zbl 0635.60021
[22] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus , 2nd ed. Graduate Texts in Mathematics 113 . Springer, New York. · Zbl 0734.60060
[23] Kellerer, H. G. (1972). Markov-Komposition und eine Anwendung auf Martingale. Math. Ann. 198 99-122. · Zbl 0229.60049 · doi:10.1007/BF01432281
[24] Klebaner, F. (2002). Option price when the stock is a semimartingale. Electron. Commun. Probab. 7 79-83 (electronic). · Zbl 1008.60057 · doi:10.1214/ECP.v7-1049
[25] Krylov, N. V. (1985). Once more about the connection between elliptic operators and Itô’s stochastic equations. In Statistics and Control of Stochastic Processes ( Moscow , 1984) 214-229. Optimization Software, New York. · Zbl 0568.60060
[26] Krylov, N. V. (2007). Parabolic and elliptic equations with VMO coefficients. Comm. Partial Differential Equations 32 453-475. · Zbl 1114.35079 · doi:10.1080/03605300600781626
[27] Madan, D. B. and Yor, M. (2002). Making Markov martingales meet marginals: With explicit constructions. Bernoulli 8 509-536. · Zbl 1009.60037
[28] Oleszkiewicz, K. (2008). On fake Brownian motions. Statist. Probab. Lett. 78 1251-1254. · Zbl 1149.60052 · doi:10.1016/j.spl.2007.11.026
[29] Parthasarathy, K. R. (2005). Probability Measures on Metric Spaces . Amer. Math. Soc., Providence, RI. · Zbl 1188.60001
[30] Piterbarg, V. V. (2005). Stochastic volatility model with time-dependent skew. Appl. Math. Finance 12 147-185. · Zbl 1148.91021 · doi:10.1080/1350486042000297225
[31] Piterbarg, V. V. (2006). Smiling hybrids. Risk 19 66-71.
[32] Piterbarg, V. V. (2007). Markovian projection for volatility calibration. Risk 20 84-89.
[33] Rebolledo, R. (1979). La méthode des martingales appliquée à l’étude de la convergence en loi de processus. Bull. Soc. Math. France Mém. 62 v+125 pp. · Zbl 0425.60036
[34] Stroock, D. W. and Varadhan, S. R. S. (1969). Diffusion processes with continuous coefficients. I. Comm. Pure Appl. Math. 22 345-400. · Zbl 0167.43903 · doi:10.1002/cpa.3160220304
[35] Stroock, D. W. and Varadhan, S. R. S. (1969). Diffusion processes with continuous coefficients. II. Comm. Pure Appl. Math. 22 479-530. · doi:10.1002/cpa.3160220404
[36] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 233 . Springer, Berlin. · Zbl 0426.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.