Xiao, Han; Wu, Wei Biao Asymptotic theory for maximum deviations of sample covariance matrix estimates. (English) Zbl 1284.62122 Stochastic Processes Appl. 123, No. 7, 2899-2920 (2013). Summary: We consider asymptotic distributions of maximum deviations of sample covariance matrices, a fundamental problem in high-dimensional inference of covariances. Under mild dependence conditions on the entries of the data matrices, we establish the Gumbel convergence of the maximum deviations. Our result substantially generalizes earlier ones where the entries are assumed to be independent and identically distributed, and provides a theoretical foundation for high-dimensional simultaneous inference of covariances. Cited in 9 Documents MSC: 62E20 Asymptotic distribution theory in statistics 62H10 Multivariate distribution of statistics 62H15 Hypothesis testing in multivariate analysis Keywords:high dimensional analysis; tapering; test for bandedness; test for covariance structure; test for stationarity PDF BibTeX XML Cite \textit{H. Xiao} and \textit{W. B. Wu}, Stochastic Processes Appl. 123, No. 7, 2899--2920 (2013; Zbl 1284.62122) Full Text: DOI References: [1] Bai, Zhidong; Jiang, Dandan; Yao, Jian-Feng; Zheng, Shurong, Corrections to LRT on large-dimensional covariance matrix by RMT, Ann. Statist., 37, 6B, 3822-3840 (2009) · Zbl 1360.62286 [2] Biao Wu, Wei, Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA, 102, 40, 14150-14154 (2005), (electronic) · Zbl 1135.62075 [3] Bickel, Peter J.; Levina, Elizaveta, Covariance regularization by thresholding, Ann. Statist., 36, 6, 2577-2604 (2008) · Zbl 1196.62062 [4] Bickel, Peter J.; Levina, Elizaveta, Regularized estimation of large covariance matrices, Ann. Statist., 36, 1, 199-227 (2008) · Zbl 1132.62040 [5] Cai, Tony; Jiang, Tiefeng, Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices, Ann. Statist., 39, 3, 1496-1525 (2011) · Zbl 1220.62066 [6] Cai, Tony; Liu, Weidong, Adaptive thresholding for sparse covariance matrix estimation, J. Amer. Statist. Assoc., 106, 494, 672-684 (2011) · Zbl 1232.62086 [7] Cai, T.; Liu, W.; Xia, Y., Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings, J. Amer. Statist. Assoc., 108, 265-277 (2013) · Zbl 06158341 [8] Chen, Song Xi; Zhang, Li-Xin; Zhong, Ping-Shou, Tests for high-dimensional covariance matrices, J. Amer. Statist. Assoc., 105, 490, 810-819 (2010) · Zbl 1321.62086 [9] Donoho, David L.; Elad, Michael; Temlyakov, Vladimir N., Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inform. Theory, 52, 1, 6-18 (2006) · Zbl 1288.94017 [10] Fan, J.; Zhang, J.; Yu, K., Vast portfolio selection with gross-exposure constraints, J. Amer. Statist. Assoc., 107, 498, 592-606 (2012) · Zbl 1261.62091 [12] Jagannathan, R.; Ma, T., Risk reduction in large portfolios: why imposing the wrong constraints helps, J. Finance, 58, 1651-1683 (2003) [13] Jiang, Tiefeng, The asymptotic distributions of the largest entries of sample correlation matrices, Ann. Appl. Probab., 14, 2, 865-880 (2004) · Zbl 1047.60014 [14] Johnstone, Iain M., On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., 29, 2, 295-327 (2001) · Zbl 1016.62078 [15] Kramer, Mark A.; Eden, Uri T.; Cash, Sydney S.; Kolaczyk, Eric D., Network inference with confidence from multivariate time series, Phys. Rev. E (3), 79, 6, 061916 (2009), 13 [16] Ledoit, Olivier; Wolf, Michael, Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size, Ann. Statist., 30, 4, 1081-1102 (2002) · Zbl 1029.62049 [17] Li, Deli; Liu, Wei-Dong; Rosalsky, Andrew, Necessary and sufficient conditions for the asymptotic distribution of the largest entry of a sample correlation matrix, Probab. Theory Related Fields, 148, 1-2, 5-35 (2010) · Zbl 1210.62010 [18] Li, Deli; Rosalsky, Andrew, Some strong limit theorems for the largest entries of sample correlation matrices, Ann. Appl. Probab., 16, 1, 423-447 (2006) · Zbl 1098.60034 [19] Liu, Wei-Dong; Lin, Zhengyan; Shao, Qi-Man, The asymptotic distribution and Berry-Esseen bound of a new test for independence in high dimension with an application to stochastic optimization, Ann. Appl. Probab., 18, 6, 2337-2366 (2008) · Zbl 1154.60021 [20] Nagaev, S. V., Large deviations of sums of independent random variables, Ann. Probab., 7, 5, 745-789 (1979) · Zbl 0418.60033 [21] Nagao, Hisao, On some test criteria for covariance matrix, Ann. Statist., 1, 700-709 (1973) · Zbl 0263.62034 [22] Péché, Sandrine, Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Related Fields, 143, 3-4, 481-516 (2009) · Zbl 1167.62019 [23] Schott, James R., Testing for complete independence in high dimensions, Biometrika, 92, 4, 951-956 (2005) · Zbl 1151.62327 [24] Soshnikov, Alexander, A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Stat. Phys., 108, 5-6, 1033-1056 (2002), Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays · Zbl 1018.62042 [25] Srivastava, Muni S., Some tests concerning the covariance matrix in high dimensional data, J. Japan Statist. Soc., 35, 2, 251-272 (2005) [26] Tony Cai, T.; Zhang, Cun-Hui; Zhou, Harrison H., Optimal rates of convergence for covariance matrix estimation, Ann. Statist., 38, 4, 2118-2144 (2010) · Zbl 1202.62073 [27] Tracy, Craig A.; Widom, Harold, Level-spacing distributions and the Airy kernel, Comm. Math. Phys., 159, 1, 151-174 (1994) · Zbl 0789.35152 [29] Yu Zaĭtsev, A., On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein’s inequality conditions, Probab. Theory Related Fields, 74, 4, 535-566 (1987) · Zbl 0612.60031 [30] Zhou, Wang, Asymptotic distribution of the largest off-diagonal entry of correlation matrices, Trans. Amer. Math. Soc., 359, 11, 5345-5363 (2007) · Zbl 1130.60032 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.