×

zbMATH — the first resource for mathematics

A survey on delayed feedback control of chaos. (English) Zbl 1284.93113
Summary: This paper introduces the basic idea and provides the mathematical formulation of the delayed feedback control (DFC) methodology, which has been widely used in chaos control. Stability analysis including the well-known odd number limitation of the DFC is reviewed. Some new developments in characterizing the limitation of the DFC are presented. Various modified DFC methods, which are developed in order to overcome the odd number limitation, are also described. Finally, some open problems in this research field are discussed.

MSC:
93B52 Feedback control
34H10 Chaos control for problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos [J]. Physical Review Utters, 1990, 64(11):1196–1199. · Zbl 0964.37501
[2] C. Grebogi, Y. C. Lai. Controlling chaos in high dimensions [J]. IEEE Trans. on Circuits and Systems – I, 1997, 44(10):971–975. · doi:10.1109/81.633886
[3] Y. P. Tian. Controlling chaos using invariant manifolds [J]. Int. J of Control, 1999,72(3):258–266. · Zbl 0958.93043 · doi:10.1080/002071799221235
[4] Y. P. Tian, X. Yu. Adaptive control of chaotic dynamical systems losing invariant manifold approach [J]. IEEE Trans, on Circuits & Systems I, 2000, 47(10): 1537–1542. · Zbl 1005.93021 · doi:10.1109/81.886986
[5] X. Yu, G. Chen, Y. Xia, et al. An Invariant-Manifold-Based Method for Chaos Control [J]. IEEE Trans. Circuits & Systems, Part I, 2001, 48(8):930–937. · Zbl 1003.93041
[6] G. Chen, X. Dong. On feedback control of chaotic continuous-time systems [J]. IEEE Trans, on Circuits and Systems – I, 1993, 40(9):591–600. · Zbl 0800.93758 · doi:10.1109/81.244908
[7] G. Chen, X. Yu. On time-delayed feedback control of chaotic systems [J]. IEEE Trans. on Circuits Systems – I, 1999, 46(6):767–772. · Zbl 0951.93034 · doi:10.1109/81.768837
[8] K. Pyragas. Continuous control of chaos by self-controlling feedback [J]. Physics Letters A, 1992, 170(6):421–428. · doi:10.1016/0375-9601(92)90745-8
[9] K. Pyragas, A. Tamasevicius. Experimental control of chaos by delayed self-controlling feedback [J]. Physics Letters A, 1993, 180(1,2):99–102. · doi:10.1016/0375-9601(93)90501-P
[10] M. E. Bleich, J. E. S. Socolar. Controlling spatiotemporal dynamics with time-delay feedback [J]. Physical Review E, 1996, 54(1): R17-RR20. · doi:10.1103/PhysRevE.54.R17
[11] E. Ott, C. Simmendinger, O. Hess. Controlling delayed-inducd chaotic behavior of a semiconductor laser with optical feedback [J]. Physics Letters A, 1996, 216(1–5):97–105. · doi:10.1016/0375-9601(96)00269-1
[12] A. V. Naumenko, N. A. Loiko, S. I. Turovets, et al. Chaos control in external cavity laser diodes using electronic impulsive delayed feedback [J]. Int. J. of Bifurcation Chaos, 1998, 8(9): 1791–1799. · doi:10.1142/S0218127498001509
[13] W. H. Hai, Y. W. Duan, L. X. Pan. An analytical study for controlling unstable periodicmotion in magneto-elastic chaos [J]. Physics Letters A, 1997, 234(3): 198–204. · doi:10.1016/S0375-9601(97)00501-X
[14] T. Hilkihara, M. Touno, T. Kawagoshi. Experiment stabilization of unstable periodic orbit in magneto-elastic chaos by delayed feedback control [J]. Int. J. of Bifurcation Chaos, 1997, 7(12):2837–2846. · Zbl 0925.93822 · doi:10.1142/S0218127497001916
[15] M. E. Brandt. H. T. Shih, G. Chen. Linear time-delayed feedback control of a pathologicalrhythm in a cardiac conduction model [J]. Physical Review E, 1997, 56(2):R1334-R1337. · doi:10.1103/PhysRevE.56.R1334
[16] F. J. Elmer. Controlling friction [J]. Physical Review E, 1998, 57(5):R4903-R4906. · doi:10.1103/PhysRevE.57.R4903
[17] K. Konishi, H. Kokame, K. Hirata. Coupled map car-following model and its delayed-feedback control [J]. Physical Review E, 1999,60 (4):4000–4007. · doi:10.1103/PhysRevE.60.4000
[18] C. Battle, E. Fossas, G. Olivar. Stabilization of periodic orbits of the buck convertor by time-delayed feedback [J]. Int. J. of Circumstance and Theory and Applications, 1999, 27(6):617–631. · Zbl 0965.93090 · doi:10.1002/(SICI)1097-007X(199911/12)27:6<617::AID-CTA87>3.0.CO;2-R
[19] X. Yu, Y. P. Tian, G. Chen. Chapter 12:Time Delayed Feedback Control of Chaos [M] // G. Chen. Controlling Chaos and Bifurcations in Engineering Systems. Roca Raton, USA: CRC Press, 1999.
[20] P. Parmananda, R. Madrigal, M. R. F. de Ciencias. Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control [J]. Physical Review E, 1999,59(5): 5266–5271. · doi:10.1103/PhysRevE.59.5266
[21] W. Just, T. Bernard, M. Ostheimer, et al. Mechanism of time-delayed feedback control [J]. Physical Review Letters, 1997,78(2): 203–206. · doi:10.1103/PhysRevLett.78.203
[22] M. Basso, R. Genesio, A. Tesi. Stabilizing periodic orbits of forced systems via generalized Pyragas controllers [J]. IEEE Trans. on Circuits and Systes-I, 1997,44(10): 1023–1027. · doi:10.1109/81.633895
[23] H. Nakajima, Y. Ueda. Limitation of generalized delayed feedback control [J]. Physica D, 1998,111(1–4): 143–150. · Zbl 0927.93030 · doi:10.1016/S0167-2789(97)80009-7
[24] K. Pyragas. Control of chaos via extended delay feedback [J]. Physics Letters A, 1995,206(5,6):323–330. · Zbl 0963.93523 · doi:10.1016/0375-9601(95)00654-L
[25] J.E.S. Socolar, D.W. Sukow, D.J. Gauthier. Stabilizing unstable periodic orbits in fist dynamical systems [J]. Physical Review E, 1994,50(4):3245–3248. · doi:10.1103/PhysRevE.50.3245
[26] Y. P. Tian, G. Chen. A seperation principle for dynamical delayed output feedback control of chaos [J]. Physics Letter A, 2001,284(1):31–42. · Zbl 0985.37049 · doi:10.1016/S0375-9601(01)00275-4
[27] T. Ushio. Limitation of delayed feedback control in nonlinear discrete-time systems [J]. IEEE Trans, on Circuits and Systems I, 1996, 43 (9):851–856. · doi:10.1109/81.538992
[28] T. Yang. Impulsive Control Theory [M]//Lecture Notes in Control and Information Sciences, Berlin: Springer-Verlag, 2001, 272:10–35.
[29] Y. P. Tian, X. Yu. Time-delayed impulsive stabilization of unstable periodic orbits in chaotic hybrid systems [M]//G. Chen, X. Yu. Chaos Control: Theory and Application. Lecture Notes in Control and Information Sciences. Berlin: Springer, 2003, 292:51–69. · Zbl 1175.93189
[30] W. Just, D. Reckwerth, J. Mockel, et al. Delayed feedback control of periodic orbits in autonomous systems [J]. Physical Review Letters, 1998,81(3):562–565. · doi:10.1103/PhysRevLett.81.562
[31] H. Nakajima. On analytical properties of delayed feedback control of chaos [J]. Physics Letters A, 1997,232(3,4):207–210. · Zbl 1053.93509 · doi:10.1016/S0375-9601(97)00362-9
[32] T. Hino, S. Yamamoto, T. Ushio. Stabilization of unstable periodic orbits of chaotic discrete-time systems using prediction-based feedback control [J]. Int. J. Bifurcation Chaos, 2002,12(2):439–446. · Zbl 1051.93525 · doi:10.1142/S0218127402004450
[33] Ö. Morgül. On the stability of delayed feedback controllers [J]. Physics Letters A, 2003,314(4):278–285. · Zbl 1026.37072 · doi:10.1016/S0375-9601(03)00866-1
[34] H. Kokame, K. Hirata, K. Konishi, et al. Difference feedback can stabilize uncertain steady states [J]. IEEE Trans, on Automatic Control, 2001,46(12):1908–1913. · Zbl 1032.93065 · doi:10.1109/9.975474
[35] S. Yamamoto, T. Ushio. Odd number limitation in delayed feedback control [M] // G. Chen, X. Yu. Chaos Control: Theory and Application. edited by Lecture Notes in Control and Information Sciences. Berlin: Springer, 2003,292:71–87. · Zbl 1044.93030
[36] Y. P. Tian, J. Zhu. Full characterization on limitation of generalized delayed feedback control for discrete-time systems [J]. Physica D, 2004, 198(3–4):248–257. · Zbl 1073.93048 · doi:10.1016/j.physd.2004.09.005
[37] J. Zhu, Y. P. Tian. A necessary and sufficient condition for stabilizability of discrete-time systems via delayed feedback control [J], Physics Letters A, 2005,343(1–3):95–107. · Zbl 1184.93104 · doi:10.1016/j.physleta.2005.06.007
[38] J. Zhu, Y. P. Tian. Stabilizability of uncontrollable systems via generalized delayed feedback control, submitted, 2005.
[39] T. Ushio. Prediction-based control of chaos [J]. Physics Letters A, 1999,264(1):30–35. · Zbl 0941.93023 · doi:10.1016/S0375-9601(99)00782-3
[40] T. Ushio, S. Yamamoto. Delayed feedback control with nonlinear estimation in chaotic discrete-time systems [J]. Physics Letters A, 1998, 247(1–2):112–118. · doi:10.1016/S0375-9601(98)00580-5
[41] K. Konishi, H. Kokame. Observer based delayed-feedback control for discrete-time chaotic systems [J]. Physical Lettiew A, 1998,248(5–6):359–368. · doi:10.1016/S0375-9601(98)00673-2
[42] S. Yamamoto, T. Hino, T. Ushio. Dynamic delayed feedback controllers for chaotic discrete-time systems [J]. IEEE Trans, on Circuits and Systems I, 2001,48(6):785–789. · Zbl 1159.93329 · doi:10.1109/81.928162
[43] S. Yamamoto, T. Hino, T. Ushio. Recursive delayed feedback control for chaotic discrete-time systems [C] // Proc. of 40th IEEE Conf. Decision and Control. Orlando, Florida, USA, December 2001: 2187–2192. · Zbl 1159.93329
[44] J. Zhu, Y. P. Tian. Nonlinear recursive delayed feedback control for chaotic descrete-time systems [J]. Physics Letters A, 2003,310(4):295–300. · Zbl 1034.93025 · doi:10.1016/S0375-9601(03)00369-4
[45] H. Nakajima, Y. Ueda, Half-period delayed feedback control for dynamical systems with symmetries [J]. Physical Review E, 1998,58(2):1757–1763. · doi:10.1103/PhysRevE.58.1757
[46] H. Nakajima. Delayed feedback control with state predictor for contrinuous-time chaotic systems [J]. Int. J. Bifurcation Chaos, 2002,12(5):1067–1077. · Zbl 1051.93527 · doi:10.1142/S0218127402004917
[47] Y. P. Tian, X. Yu. Stabilizing unstable periodic orbits of chaotic systems via an optimal principle [J]. J. of the Franklin Institute, 2000, 337(6):771–779. · Zbl 0998.93034 · doi:10.1016/S0016-0032(00)00047-8
[48] J. Zhu, Y. P. Tian. Stabilizing periodic solutions of nonlinear systems and applications in chaos control [J]. IEEE Trans. on Circuits Systems – II, 2005,52(12):870–874. · doi:10.1109/TCSII.2005.853342
[49] K. Pyragas. Control of chaos via an unstable delayed feedback controller [J]. Physical Review Letters, 2001,86(11):2265–2268. · doi:10.1103/PhysRevLett.86.2265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.