×

zbMATH — the first resource for mathematics

Fuzzy empirical distribution function: properties and applications. (English) Zbl 1284.93240
Summary: The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the \(\alpha \)-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy \(p\)-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy \(p\)-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper.

MSC:
93E12 Identification in stochastic control theory
93C57 Sampled-data control/observation systems
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Arefi, M., Viertl, R., Taheri, S. M.: Fuzzy density estimation. Metrika 75 (2012), 5-22. · Zbl 1241.62040 · doi:10.1007/s00184-010-0311-y
[2] Bzowski, A., Urbanski, M. K.: Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables. · arxiv.org
[3] Denoeux, T., Masson, M. H., Herbert, P. H.: Non-parametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets and Systems 153 (2005), 1-28.
[4] Dubois, D., Prade, H.: Operation on fuzzy numbers. Internat. J. System Sci. 9 (1978), 613-626. · Zbl 0383.94045 · doi:10.1080/00207727808941724
[5] Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory. Inform. Sci. 30 (1983), 183-224. · Zbl 0569.94031 · doi:10.1016/0020-0255(83)90025-7
[6] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59 (2004), 21-29. · Zbl 1052.62009 · doi:10.1007/s001840300269
[7] Gibbons, J. D., Chakraborti, S.: Non-parametric Statistical Inference. Fourth edition. Marcel Dekker, New York 2003. · Zbl 1115.62004
[8] Gil, M. A.: Fuzzy random variables: Development and state of the art. Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15.
[9] Govindarajulu, Z.: Non-parametric Inference. Hackensack, World Scientific 2007. · Zbl 1128.62035 · ebooks.worldscinet.com
[10] Grzegorzewski, P.: Statistical inference about the median from vague data. Control Cybernet. 27 (1998), 447-464. · Zbl 0945.62038
[11] Grzegorzewski, P.: Two-sample median test for vague data. Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626.
[12] Grzegorzewski, P.: K-sample median test for vague data. Internat. J. Intelligent Systems 24 (2009), 529-539. · Zbl 1160.62039 · doi:10.1002/int.20345
[13] Grzegorzewski, P.: Distribution-free tests for vague data. Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502. · Zbl 1064.62052
[14] Grzegorzewski, P.: A bi-robust test for vague data. Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU’08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, Torremolinos 2008, pp. 138-144.
[15] Hesamian, G., Taheri, S. M.: Linear rank tests for two-sample fuzzy data: a p-value approach. J. Uncertainty Systems 7 (2013), 129-137.
[16] Holena, M.: Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252. · Zbl 1050.68137 · doi:10.1016/S0165-0114(03)00208-2
[17] Hryniewicz, O.: Goodman-Kruskal \(\gamma\) measure of dependence for fuzzy ordered categorical data. Comput. Statist. Data Anal. 51 (2006), 323-334. · Zbl 1157.62424 · doi:10.1016/j.csda.2006.04.014
[18] Hryniewicz, O.: Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets and Systems 157 (2006), 2665-2673. · Zbl 1099.62008 · doi:10.1016/j.fss.2003.08.009
[19] Kahraman, C., Bozdag, C. F., Ruan, D.: Fuzzy sets approaches to statistical parametric and non-parametric tests. Internat. J. Intelligent Systems 19 (2004), 1069-1078. · Zbl 1074.62029 · doi:10.1002/int.20037
[20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. · Zbl 0605.60038 · doi:10.1098/rspa.1986.0091
[21] Krätschmer, V.: Probability theory in fuzzy sample spaces. Metrika 60 (2004), 167-189. · Zbl 1083.60004 · doi:10.1007/s001840300303
[22] Kruse, R., Meyer, K. D.: Statistics with Vague Data. Reidel Publishing Company, Dordrecht 1987. · Zbl 0663.62010
[23] Lee, K. H.: First Course on Fuzzy Theory and Applications. Springer, Heidelberg 2005. · Zbl 1063.94129
[24] Li, S., Ogura, Y.: Strong laws of large numbers for independent fuzzy set-valued random variables. Fuzzy Sets and Systems 157 (2006), 2569-2578. · Zbl 1104.60307 · doi:10.1016/j.fss.2003.06.011
[25] Kvam, P. H., Vidadovic, B.: Non-parametric Statistics with Application to Science and Engineering. J. Wiley, New Jersey 2007.
[26] Mareš, M.: Fuzzy data in statistics. Kybernetika 43 (2007), 491-502. · Zbl 1134.62001 · www.kybernetika.cz · eudml:33874
[27] Nguyen, H., Wang, T., Wu, B.: On probabilistic methods in fuzzy theory. Internat. J. Intelligent Systems 19 (2004), 99-109. · Zbl 1101.68874 · doi:10.1002/int.10154
[28] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 209-226. · Zbl 1247.62105 · doi:10.1007/s00362-008-0133-4
[29] Parthasarathy, K. R.: Probability Measurs on Metric Space. Academic Press, New York 1967.
[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 361 (1986), 409-422. · Zbl 0605.60038 · doi:10.1098/rspa.1986.0091
[31] Shapiro, A. F.: Fuzzy random variables. Insurance: Math. and Econom. 44 (2009), 307-314. · Zbl 1206.93062 · doi:10.1016/j.fss.2010.05.004
[32] Taheri, S. M., Hesamian, G.: Goodman-Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47 (2011), 110-122. · Zbl 1213.93199 · www.kybernetika.cz · eudml:196869
[33] Taheri, S. M., Hesamian, G.: A generalization of the Wilcoxon signed-rank test and its applications. Statist. Papers 54 (2013), 457-470. · Zbl 1364.62114 · doi:10.1007/s00362-012-0443-4
[34] Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147. · Zbl 1157.62368 · doi:10.1016/j.csda.2006.04.002
[35] Viertl, R.: Statistical Methods for Fuzzy Data. J. Wiley, Chichester 2011. · Zbl 1101.62003
[36] Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets and Systems 118 (2001), 387-405. · Zbl 0971.03055 · doi:10.1016/S0165-0114(99)00063-9
[37] Wu, H. C.: Statistical hypotheses testing for fuzzy data. Fuzzy Sets and Systems 175 (2005), 30-56. · Zbl 1081.62012 · doi:10.1016/j.ins.2003.12.009
[38] Yoan, Y.: Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems 43 (1991), 139-157. · Zbl 0747.90003 · doi:10.1016/0165-0114(91)90073-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.