×

The weak Lefschetz property for \(\mathfrak{m}\)-full ideals and componentwise linear ideals. (English) Zbl 1285.13026

This paper is based on two results of A. Wiebe [Commun. Algebra 32, No. 12, 4601–4611 (2004; Zbl 1089.13500)] and A. Conca et al. [Math. Z. 265, No. 3, 715–734 (2010; Zbl 1236.13009)]. Wiebe proved a 3-statement equivalence for a componentwise linear ideal to have the weak Lefschetz property in terms of the graded Betti numbers; while Conca et al. showed that componentwise linear ideals are \(\mathfrak m\)-full. Therefore, the idea of the authors to study whether Wiebe’s equivalence holds for \(\mathfrak m\)-full ideals naturally appears.
Firstly they give the equivalence of the three original statements of Wiebe for a \(\mathfrak m\)-full ideal \(I\) with the additional assumption that \(I + (x) / (x)\) is \(\mathfrak m\)-full where \(x\) is a general linear form. Secondly they show that if the generic initial ideal with respect to the graded reverse lexicographic order is stable, then the ideal is componentwise linear if and only if it is completely \(\mathfrak m\)-full.

MSC:

13E10 Commutative Artinian rings and modules, finite-dimensional algebras
13A02 Graded rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

References:

[1] \beginbarticle \bauthor\binitsA. \bsnmConca, \batitleReduction number and initial ideals, \bjtitleProc. Amer. Math. Soc. \bvolume131 (\byear2003), page 1015-\blpage1020. \endbarticle \endbibitem · Zbl 1015.13010 · doi:10.1090/S0002-9939-02-06607-8
[2] \beginbarticle \bauthor\binitsA. \bsnmConca, \bauthor\binitsE. \bparticleDe \bsnmNegri and \bauthor\binitsM. E. \bsnmRossi, \batitleIntegrally closed and componentwise linear ideals, \bjtitleMath. Z. \bvolume265 (\byear2010), page 715-\blpage734. \endbarticle \endbibitem · Zbl 1236.13009 · doi:10.1007/s00209-009-0537-4
[3] \beginbarticle \bauthor\binitsS. \bsnmGoto, \batitleIntegral closedness of complete intersection ideals, \bjtitleJ. Algebra \bvolume108 (\byear1987), page 151-\blpage160. \endbarticle \endbibitem · Zbl 0629.13004 · doi:10.1016/0021-8693(87)90128-1
[4] \beginbarticle \bauthor\binitsS. \bsnmGoto and \bauthor\binitsF. \bsnmHayasaka, \batitleFinite homological dimension and primes associated to integrally closed ideals, \bjtitleProc. Amer. Math. Soc. \bvolume130 (\byear2002), page 3159-\blpage3164. \endbarticle \endbibitem · Zbl 0995.13009 · doi:10.1090/S0002-9939-02-06436-5
[5] \beginbchapter \bauthor\binitsM. L. \bsnmGreen, \bctitleGeneric initial ideals, \bbtitleSix Lectures on Commutative Algebra, \bsertitleProgress in Math., vol. \bseriesno166, , \blocationBasel, \byear1998, pp. page 119-\blpage186. \endbchapter \endbibitem · doi:10.1007/978-3-0346-0329-4_2
[6] \beginbbook \bauthor\binitsJ. \bsnmHerzog and \bauthor\binitsT. \bsnmHibi, \bbtitleMonomial ideals, \bpublisherSpringer, \blocationLondon, \byear2011. \endbbook \endbibitem · Zbl 1206.13001 · doi:10.1007/978-0-85729-106-6
[7] \beginbarticle \bauthor\binitsJ. \bsnmHong, \bauthor\binitsH. \bsnmLee, \bauthor\binitsS. \bsnmNoh and \bauthor\binitsD. E. \bsnmRush, \batitleFull ideals, \bjtitleComm. Algebra \bvolume37 (\byear2009), page 2627-\blpage2639. \endbarticle \endbibitem · Zbl 1171.13012 · doi:10.1080/00927870902747340
[8] \beginbotherref \oauthor\binitsU. \bsnmNagel and \oauthor\binitsT. , Criteria for componentwise linearity , preprint, 2011, available at \arxivurl arXiv:
[9] \beginbarticle \bauthor\binitsJ. \bsnmWatanabe, \batitle\(\mathfrak{m}\)-full ideals, \bjtitleNagoya Math. J. \bvolume106 (\byear1987), page 101-\blpage111. \endbarticle \endbibitem
[10] \beginbarticle \bauthor\binitsJ. \bsnmWatanabe, \batitleThe syzygies of \(\mathfrak m\)-full ideals, \bjtitleMath. Proc. Cambridge Philos. Soc. \bvolume109 (\byear1991), page 7-\blpage13. \endbarticle \endbibitem · Zbl 0736.13006 · doi:10.1017/S0305004100069528
[11] \beginbarticle \bauthor\binitsJ. \bsnmWatanabe, \batitle\(\mathfrak{m}\)-full ideals II, \bjtitleMath. Proc. Cambridge Philos. Soc. \bvolume111 (\byear1992), page 231-\blpage240. \endbarticle \endbibitem · Zbl 0751.13001 · doi:10.1017/S0305004100075320
[12] \beginbarticle \bauthor\binitsA. \bsnmWiebe, \batitleThe Lefschetz property for componentwise linear ideals and Gotzmann ideals, \bjtitleComm. Algebra \bvolume32 (\byear2004), page 4601-\blpage4611. \endbarticle \endbibitem · Zbl 1089.13500 · doi:10.1081/AGB-200036809
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.