Dey, Debashis; Saha, Mantu Common fixed point theorems in a complete 2-metric space. (English) Zbl 1285.54034 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 52, No. 1, 79-87 (2013). Summary: In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and \(A\)-contraction type condition and then extend the theorem for a class of mappings. MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 54E40 Special maps on metric spaces 54E50 Complete metric spaces Keywords:fixed point; common fixed point; 2-metric space; completeness × Cite Format Result Cite Review PDF Full Text: Link References: [1] Akram, M., Zafar, A. A., Siddiqui A. A.: A general class of contractions: \(A\)-contractions. Novi Sad J. Math. 38, 1 (2008), 25-33. · Zbl 1274.54092 [2] Bianchini, R.: Su un problema di S.Reich riguardante la teori dei punti fissi. Boll. Un. Math. Ital. 5 (1972), 103-108. · Zbl 0249.54023 [3] Cho, Y. J., Khan, M. S., Singh, S. L.: Common fixed points of weakly commuting mappings. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 18, 1 (1988), 129-142. · Zbl 0708.54037 [4] Delbosco, D.: An unified approach for the contractive mappings. Jnanabha 16 (1986), 1-11. · Zbl 0632.54026 [5] Fisher, B.: Common fixed points of four mappings. Bull. Inst. Math. Acad. Sinicia 11 (1983), 103-113. · Zbl 0515.54029 [6] Gähler, S.: 2-metric Raume and ihre topologische strucktur. Math.Nachr. 26 (1963), 115-148. · Zbl 0117.16003 · doi:10.1002/mana.19630260109 [7] Gähler, S: Uber die unifromisieberkeit 2-metrischer Raume. Math. Nachr. 28 (1965), 235-244. · Zbl 0142.39804 · doi:10.1002/mana.19640280309 [8] Kannan, R.: Some results on fixed points-II. Amer. Math. Monthly 76, 4 (1969), 405-408. · Zbl 0179.28203 · doi:10.2307/2316437 [9] Khan, M. D.: A Study of Fixed Point Theorems. Doctoral Thesis, Aligarh Muslim University, Aligarh, Uttar Pradesh, India, 1984. [10] Naidu, S. V. R., Prasad, J. R.: Fixed points in 2- metric spaces. Indian J. Pure AppL. Math. 1, 8 (1986), 974-993. · Zbl 0592.54049 [11] Reich, S.: Kannan’s fixed point theorem. Boll. Un. Math. Ital. 4 (1971), 1-11. · Zbl 0219.54042 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.