Klopp, Frédéric; Loss, Michael; Nakamura, Shu; Stolz, Günter Localization for the random displacement model. (English) Zbl 1285.82030 Duke Math. J. 161, No. 4, 587-621 (2012). The random displacement model is a random Schrödinger operator in the continuum with a random perturbation of the periodic potential. In this article, the authors prove spectral localization (a.s. pure point spectrum and exponentially decaying eigenfunctions) and dynamical localization in an interval above the ground state energy. A key ingredient is previous work by two of the authors characterizing the configurations of random displacements that minimize the ground state energy. This is turn is derived from a careful analysis of the ground state energy of Schrödinger operators in a box with von Neumann boundary conditions, which shows that the potential that minimizes the ground state energy is centered in a corner. The structure of the localization proof is standard: (i) smallness of the integrated density of states and (ii) Wegner estimate, used as inputs to the multiscale method. While (i) & (ii) are proved in details in the paper and both use the a priori knowledge on the ground state energy, the running of the multiscale method from them is known and only briefly discussed for pedagogical reasons. Reviewer: Sven Bachmann (München) Cited in 20 Documents MSC: 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics 47B80 Random linear operators Keywords:Lifshitz tail; Wegner estimate; localization × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] J. Baker, M. Loss, and G. Stolz, Minimizing the ground state energy of an electron in a randomly deformed lattice , Comm. Math. Phys. 283 (2008), 397-415. · Zbl 1157.81009 · doi:10.1007/s00220-008-0507-4 [2] J. Baker, M. Loss, and G. Stolz, Low energy properties of the random displacement models , J. Funct. Anal. 256 (2009), 2725-2740. · Zbl 1167.82014 · doi:10.1016/j.jfa.2009.01.022 [3] M. Sh. Birman and D. R. Yafaev, The spectral shift function: The work of M. G. Krein and its further development , St. Petersburg Math. J. 4 (1993), 833-870. [4] D. Buschmann and G. Stolz, Two-parameter spectral averaging and localization properties for non-monotonic random Schrödinger operators , Trans. Amer. Math. Soc. 353 (2000), 635-653. · Zbl 0978.81021 · doi:10.1090/S0002-9947-00-02674-X [5] J. M. Combes, P. D. Hislop, and S. Nakamura, The L p -theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators , Comm. Math. Phys. 218 (2001), 113-130. · Zbl 1042.82024 · doi:10.1007/PL00005555 [6] D. Damanik, D. Lenz, and G. Stolz, Lower transport bounds for one-dimensional continuum Schrödinger operators , Math. Ann. 336 (2006), 361-389. · Zbl 1116.34066 · doi:10.1007/s00208-006-0006-x [7] D. Damanik, R. Sims, and G. Stolz, Localization for one-dimensional continuum, Bernoulli-Anderson models , Duke Math. J. 114 (2002), 59-100. · Zbl 1107.82025 · doi:10.1215/S0012-7094-02-11414-8 [8] D. Damanik and S. Tcheremchantsev, Power-law bounds on transfer matrices and quantum dynamics in one dimension , Comm. Math. Phys. 236 (2003), 513-534. · Zbl 1033.81032 · doi:10.1007/s00220-003-0824-6 [9] R. Fukushima, Brownian survival and Lifshitz tail in perturbed lattice disorder , J. Funct. Anal. 256 (2009), 2867-2893. · Zbl 1163.60045 · doi:10.1016/j.jfa.2009.01.030 [10] R. Fukushima and N. Ueki, Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice , Ann. Henri Poincaré 11 (2010), 1053-1083. · Zbl 1210.82013 · doi:10.1007/s00023-010-0051-6 [11] F. Germinet, P. D. Hislop, and A. Klein, Localization at low energies for attractive Poisson random Schrödinger operators , CRM Proc. Lecture Notes 42 (2007), 153-165. · Zbl 1149.35064 [12] F. Germinet, P. D. Hislop and A. Klein, Localization for Schrödinger operators with Poisson random potential , J. Eur. Math. Soc. 9 (2007), 577-607. · Zbl 1214.82053 [13] F. Germinet and A. Klein, Bootstrap multiscale analysis and localization in random media , Comm. Math. Phys. 222 (2001), 415-448. · Zbl 0982.82030 · doi:10.1007/s002200100518 [14] F. Ghribi and F. Klopp, Localization for the random displacement model at weak disorder , Ann. Henri Poincaré 11 (2010), 127-149. · Zbl 1210.82063 · doi:10.1007/s00023-010-0030-y [15] P. D. Hislop and F. Klopp, The integrated density of states for some random operators with nonsign definite potentials , J. Funct. Anal. 195 (2002), 12-47. · Zbl 1013.60046 · doi:10.1006/jfan.2002.3947 [16] S. Jitomirskaya, H. Schulz-Baldes, and G. Stolz, Delocalization in random polymer models , Comm. Math. Phys. 233 (2003), 27-48. · Zbl 1013.82027 · doi:10.1007/s00220-002-0757-5 [17] T. Kato, Perturbation Theory for Linear Operators , 2nd ed., Springer, Berlin, 1976. · Zbl 0342.47009 [18] A. Klein, Multiscale analysis and localization of random operators. Random Schröinger operators , Panor. Synthèses 25 (2008), 121-159. · Zbl 1187.82058 [19] F. Klopp, Localization for semiclassical continuous random Schrödinger operators, II: The random displacement model , Helv. Phys. Acta 66 (1993), 810-841. · Zbl 0820.60043 [20] F. Klopp and S. Nakamura, Spectral extrema and Lifshitz tails for non monotonous alloy type models , Comm. Math. Phys. 287 (2009), 1133-1143. · Zbl 1198.35065 · doi:10.1007/s00220-008-0666-3 [21] F. Klopp and S. Nakamura, Lifshitz tails for generalized alloy type random Schrödinger operators , Analysis and PDE 3 (2010), 409-426. · Zbl 1226.35058 · doi:10.2140/apde.2010.3.409 [22] F. Klopp, S. Nakamura, F. Nakano, and Y. Nomura, Anderson localization for 2D discrete Schrödinger operators with random magnetic fields , Ann. H. Poincaré 4 (2003), 795-811. · Zbl 1044.81040 · doi:10.1007/s00023-003-0147-3 [23] B. Simon, Spectral averaging and the Krein spectral shift , Proc. Amer. Math. Soc. 126 (1998), 1409-1413. · Zbl 0892.47021 · doi:10.1090/S0002-9939-98-04261-0 [24] R. Sims, Localization in one-dimensional models of disordered media , Ph.D. dissertation, University of Alabama at Birmingham, 2001. [25] P. Stollmann, Caught by Disorder: Bound States in Random Media , Prog. Math. Phys. 20 , Birkhäuser, Boston, 2001. · Zbl 0983.82016 [26] D. R. Yafaev, Mathematical Scattering Theory: General Theory , Transl. Math. Monogr. 105 , Amer. Math. Soc., Providence, 1992. · Zbl 0761.47001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.