Gielen, Steffen; Wise, Derek K. Lifting general relativity to observer space. (English) Zbl 1285.83005 J. Math. Phys. 54, No. 5, 052501, 29 p. (2013). Summary: The “observer space” of a Lorentzian spacetime is the space of future-timelike unit tangent vectors. Using Cartan geometry, we first study the structure a given spacetime induces on its observer space, then use this to define abstract observer space geometries for which no underlying spacetime is assumed. We propose taking observer space as fundamental in general relativity, and prove integrability conditions under which spacetime can be reconstructed as a quotient of observer space. Additional field equations on observer space then descend to Einstein’s equations on the reconstructed spacetime. We also consider the case where no such reconstruction is possible, and spacetime becomes an observer-dependent, relative concept. Finally, we discuss applications of observer space, including a geometric link between covariant and canonical approaches to gravity.{©2013 American Institute of Physics} Cited in 4 Documents MSC: 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems) 53Z05 Applications of differential geometry to physics 81P15 Quantum measurement theory, state operations, state preparations 83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism Keywords:general relativity; observer space; future-timelike unit tangent vectors; Cartan geometry; Einstein’s equations × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] 1.D. V.Alekseevsky and P. W.Michor, “Differential geometry of \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{g}\end{document} \)<mml:math overflow=”scroll“><mml:mi mathvariant=”fraktur“>g-manifolds,” Diff. Geom. Applic.5, 371-403 (1995);10.1016/0926-2245(95)00023-2e-print arXiv:math/9309214. · Zbl 0854.53028 [2] Alekseevsky, D. V.; Michor, P. W., Differential geometry of Cartan connections, Publ. Math. (Debrecen), 47, 349-375 (1995) · Zbl 0857.53011 [3] 3.J.Ambjorn, J.Jurkiewicz, and R.Loll, “Reconstructing the universe,” Phys. Rev. D72, 064014 (2005);10.1103/PhysRevD.72.064014e-print arXiv:hep-th/0505154. · Zbl 1247.83243 [4] 4.G.Amelino-Camelia, L.Freidel, J.Kowalski-Glikman, and L.Smolin, “The principle of relative locality,” Phys. Rev. D84, 084010 (2011);10.1103/PhysRevD.84.084010e-print arXiv:1101.0931. · Zbl 1228.83040 [5] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989) · Zbl 0692.70003 [6] Baez, J. C.; Wise, D. K., Teleparallel gravity as a higher gauge theory · Zbl 1308.83017 [7] 7.J. F.Barbero G., “Real Ashtekar variables for Lorentzian signature space times,” Phys. Rev. D51, 5507-5510 (1995);10.1103/PhysRevD.51.5507e-print arXiv:gr-qc/9410014. [8] 8.J.Barbour, “Shape dynamics, an introduction,” in Quantum Field Theory and Gravity (Springer, Basel, 2012), e-print arXiv:1105.0183; H.Gomes, S.Gryb, and T.Koslowski, “Einstein gravity as a 3D conformally invariant theory,” Class. Quantum Grav.28, 045005 (2011);10.1088/0264-9381/28/4/045005e-print arXiv:1010.2481. · Zbl 1210.83005 [9] Chern, S. S., Finsler geometry is just Riemannian geometry without the quadratic restriction, Not. Am. Math. Soc., 43, 959-963 (1996) · Zbl 1044.53512 [10] Cohen, A. G.; Glashow, S. L., Very special relativity, Phys. Rev. Lett., 97, 021601 (2006) · Zbl 1228.83009 · doi:10.1103/PhysRevLett.97.021601 [11] Dida, H. M.; Ikemakhen, A., A class of metrics on tangent bundles of pseudo-Riemannian manifolds, Arch. Math. (Brno), 47, 293-308 (2011) · Zbl 1249.53020 [12] Flannery, M. R., The enigma of nonholonomic constraints, Am. J. Phys., 73, 265-272 (2005) · Zbl 1219.70039 · doi:10.1119/1.1830501 [13] 13.G. W.Gibbons and S.Gielen, “Deformed general relativity and torsion,” Class. Quantum Grav.26, 135005 (2009);10.1088/0264-9381/26/13/135005e-print arXiv:0902.2001. · Zbl 1171.83344 [14] 14.S.Gielen and D. K.Wise, “Spontaneously broken Lorentz symmetry for Hamiltonian gravity,” Phys. Rev. D85, 104013 (2012);10.1103/PhysRevD.85.104013e-print arXiv:1111.7195. [15] 15.S.Gielen and D. K.Wise, “Linking covariant and canonical general relativity via local observers,” Gen. Relativ. Grav.44, 3103-3109 (2012);10.1007/s10714-012-1443-3e-print arXiv:1206.0658. · Zbl 1254.83008 [16] Harindranath, A.; Vary, J. P.; Woelz, F., An introduction to light-front dynamics for pedestrians, Light-Front Quantization and Non-Perturbative QCD (1997) [17] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces (1978) · Zbl 0451.53038 [18] 18.P.Hořava, “Quantum gravity at a Lifshitz point,” Phys. Rev. D79, 084008 (2009);10.1103/PhysRevD.79.084008e-print arXiv:0901.3775. · Zbl 1225.83033 [19] Kibble, T. W. B., Lorentz invariance and the gravitational field, J. Math. Phys., 2, 212-221 (1961) · Zbl 0095.22903 · doi:10.1063/1.1703702 [20] Kragh, H., Dirac: A Scientific Biography (2005) [21] MacDowell, S. W.; Mansouri, F., Unified geometric theory of gravity and supergravity, Phys. Rev. Lett., 38, 739-742 (1977) · doi:10.1103/PhysRevLett.38.739 [22] Meinrenken, E., “Group actions on manifolds,” Lecture Notes, University of Toronto, 2003, see . · Zbl 1061.53034 [23] Michor, P. W., Topics in Differential Geometry, 93 (2008) · Zbl 1175.53002 [24] Palais, R. S., A Global Formulation of the Lie Theory of Transformation Groups, 22 (1957) · Zbl 0178.26502 [25] Sharpe, R. W., Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program (1997) · Zbl 0876.53001 [26] Stelle, K. S.; West, P. C., Spontaneously broken de Sitter symmetry and the gravitational holonomy group, Phys. Rev. D, 21, 1466-1488 (1980) · doi:10.1103/PhysRevD.21.1466 [27] 27.D. K.Wise, “MacDowell-Mansouri gravity and Cartan geometry,” Class. Quantum Grav.27, 155010 (2010);10.1088/0264-9381/27/15/155010e-print arXiv:gr-qc/0611154. · Zbl 1195.83084 [28] 28.D. K.Wise, “Symmetric space Cartan connections and gravity in three and four dimensions,” SIGMA5, 080 (2009);10.3842/SIGMA.2009.080e-print arXiv:0904.1738. · Zbl 1188.22014 [29] 29.D. K.Wise, “The geometric role of symmetry breaking in gravity,” J. Phys.: Conf. Ser.360, 012017 (2012);10.1088/1742-6596/360/1/012017e-print arXiv:1112.2390. [30] Wise, D. K., “Holographic special relativity” (unpublished). · Zbl 1338.83022 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.