×

Minimal \(k\)-rankings and the rank number of \(P^2_n\). (English) Zbl 1286.05050


MSC:

05C15 Coloring of graphs and hypergraphs
05C78 Graph labelling (graceful graphs, bandwidth, etc.)
05C85 Graph algorithms (graph-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bodlaender, H.L.; Deogun, J.S.; Jansen, K.; Kloks, T.; Kratsch, D.; Müller, H.; Tuza, Z., Rankings of graphs, SIAM J. discrete math., 11, 1, 168-181, (1998) · Zbl 0907.68137
[2] de la Torre, P.; Greenlaw, R.; Przytycka, T., Optimal tree ranking is in NC, Parallel process. lett., 2, 1, 31-41, (1992)
[3] D. Dereniowski, Parallel scheduling by graph ranking, PhD thesis, PG WETI · Zbl 1098.68036
[4] Dereniowski, D., Rank coloring of graphs, (), 79-93
[5] Dereniowski, D.; Nadolski, A., Vertex rankings of chordal graphs and weighted trees, Inform. process. lett., 98, 96-100, (2006) · Zbl 1187.68340
[6] Ghoshal, J.; Laskar, R.; Pillone, D., Further results on minimal rankings, Ars combin., 52, 181-198, (1999) · Zbl 0977.05048
[7] Ghoshal, J.; Laskar, R.; Pillone, D., Minimal rankings, Networks, 28, 45-53, (1996) · Zbl 0863.05071
[8] Hsieh, S., On vertex ranking of a starlike graph, Inform. process. lett., 82, 131-135, (2002) · Zbl 1013.68141
[9] Jamison, R.E., Coloring parameters associated with the rankings of graphs, Congr. numer., 164, 111-127, (2003) · Zbl 1043.05049
[10] V. Kostyuk, D.A. Narayan, Minimal k-rankings for cycles, Ars Combin., submitted for publication · Zbl 1313.05322
[11] Kostyuk, V.; Narayan, D.A.; Williams, V.A., Minimal rankings and the arank number of a path, Discrete math., 306, 1991-1996, (2006) · Zbl 1101.05040
[12] C.E. Leiserson, Area efficient graph layouts for VLSI, in: Proc. 21st Ann. IEEE Symposium, FOCS, 1980, pp. 270-281
[13] Laskar, R.; Pillone, D., Extremal results in rankings, Congr. numer., 149, 33-54, (2001) · Zbl 0989.05058
[14] Laskar, R.; Pillone, D., Theoretical and complexity results for minimal rankings, J. combin. inf. sci., 25, 1-4, 17-33, (2000) · Zbl 1219.05188
[15] Sen, A.; Deng, H.; Guha, S., On a graph partition problem with application to VLSI layout, Inform. process. lett., 43, 87-94, (1992) · Zbl 0764.68132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.