Miyauchi, Michitaka Whittaker functions associated to newforms for \(GL(n)\) over \(p\)-adic fields. (English) Zbl 1286.22014 J. Math. Soc. Japan 66, No. 1, 17-24 (2014). Let \(F\) be a non-Archimedean local field of characteristic zero. Jacquet, Piatetski-Shapiro and Shalika introduced the notion of newforms for irreducible generic representations of \(GL_n(F)\). An explicit formula for Whittaker functions associated to newforms on the diagonal matrices in \(GL_n(F)\) is given. Reviewer: L. N. Vaserstein (University Park) Cited in 7 Documents MSC: 22E50 Representations of Lie and linear algebraic groups over local fields Keywords:local newform; Whittaker function PDF BibTeX XML Cite \textit{M. Miyauchi}, J. Math. Soc. Japan 66, No. 1, 17--24 (2014; Zbl 1286.22014) Full Text: DOI arXiv Euclid References: [1] I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group \(GL(n,F)\), where \(F\) is a local non-Archimedean field, Uspehi Mat. Nauk, 31 , no.,3 (1976), 5-70. · Zbl 0342.43017 [2] D. Bump and S. Friedberg, The exterior square automorphic \(L\)-functions on \(GL(n)\), In: Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3 , Weizmann, Jerusalem, 1990, pp.,47-65. · Zbl 0712.11030 [3] D. Bump and D. Ginzburg, Symmetric square \(L\)-functions on \(GL(r)\), Ann. of Math. (2), 136 (1992), 137-205. · Zbl 0753.11021 [4] W. Casselman, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. · Zbl 0239.10015 [5] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math., 260 , Springer-Verlag, Berlin, 1972. · Zbl 0244.12011 [6] H. Jacquet, Principal \(L\)-functions of the linear group, In: Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp.,63-86. · Zbl 0413.12007 [7] H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann., 256 (1981), 199-214. · Zbl 0443.22013 [8] H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math., 105 (1983), 367-464. · Zbl 0525.22018 [9] S. Kondo and S. Yasuda, Local \(L\) and epsilon factors in Hecke eigenvalues, J. Number Theory, 132 (2012), 1910-1948. · Zbl 1365.11055 [10] I. G. Macdonald, Symmetric Functions and Hall Polynomials. Second ed., With contributions by A. Zelevinsky, Oxford Math. Monogr., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. · Zbl 0824.05059 [11] N. Matringe, Essential Whittaker functions for \(GL(n)\), Documenta Math., 18 (2013), 1191-1214. · Zbl 1286.22013 [12] T. Shintani, On an explicit formula for class-1 “Whittaker functions” on \(GL_n\) over \(\mathfrak{P}\)-adic fields, Proc. Japan Acad., 52 (1976), 180-182. · Zbl 0387.43002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.