Conus, Daniel; Joseph, Mathew; Khoshnevisan, Davar On the chaotic character of the stochastic heat equation, before the onset of intermitttency. (English) Zbl 1286.60060 Ann. Probab. 41, No. 3B, 2225-2260 (2013). Let \(W = \{ W(t,x) \}\), \(t \geq 0\), \(x \in {\mathbb R}\), denote a real-valued Brownian sheet indexed by \((t,x)\) \(\in\) \({\mathbb R}_+ \times {\mathbb R}\), namely, \(W\) is a centered Gaussian process with covariance \[ \mathrm{Cov}( W(t,x), W(s,y)) = \min (t,s) \times \min ( | x |, | y | ) \times 1_{(0, \infty)} (x,y). \tag{1} \] This paper treats the nonlinear stochastic heat equation \[ \frac{\partial}{\partial t} u_t(x) = \frac{k}{2} \frac{\partial^2}{\partial x^2} u_t(x) + \sigma( u_t(x) ) \frac{\partial^2}{\partial t \partial x} W(t,x), \tag{2} \] where \(x \in {\mathbb R}\), \(t > 0\), \(\sigma : {\mathbb R} \to {\mathbb R}\) is a nonrandom and Lipschitz continuous function, \(k > 0\) is a fixed viscosity parameter and the initial function \(u_0 : {\mathbb R} \to {\mathbb R}\) is bounded, nonrandom and measurable. The mixed partial derivative \(\partial^2 W(t,x)/\partial t \partial x\) is the space-time white noise, and is defined as a generalized Gaussian random field. It is well known that the stochastic heat equation (2) has a weak solution \(\{ u_t(x) \}\), \(t > 0\), \(x \in {\mathbb R}\}\), that is jointly continuous, and also that it is unique up to evanescence. Moreover, the solution can be written in mild form as the a.s. solution to the following stochastic integral equation: \[ u_t(x) = ( p_t * u_0)(x) + \iint_{ (0,t) \times R} p_{t-s}(y-x) \sigma( u_s(y)) W(ds dy), \tag{3} \] where \(p_t(z)\) denotes the free-space heat kernel. The authors establish that the global behavior of the solution depends in a critical manner, on the structure of the initial function \(u_0\), at every fixed time \(t > 0\). This sensitivity to the initial data implies that the solution to the stochastic heat equation is chaotic at fixed times, before the onset of intermittency. Actually, under suitable conditions on \(u_0\) and \(\sigma\), \[ \sup_{ x \in {\mathbb R} } u_t(x) < \infty \quad \text{a.s.}, \tag{4} \] when \(u_0\) has compact support; while when \(u_0\) is bounded uniformly away from zero, \[ \limsup_{ | x | \to \infty} \frac{ u_t(x)}{ ( \log | x | )^{1/6} } > 0 \tag{5} \] holds with probability one. For other related works, see, e.g. [M. Foondun and D. Khoshnevisan, Ann. Inst. Henri Poincaré, Probab. Stat. 46, No. 4, 895–907 (2010; Zbl 1210.35305); C. Mueller, Stochastics Stochastics Rep. 37, No. 4, 225–245 (1991; Zbl 0749.60057)]. Reviewer: Isamu Dôku (Saitama) Cited in 1 ReviewCited in 29 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 35R60 PDEs with randomness, stochastic partial differential equations Keywords:stochastic heat equation; chaos; intermittency; space-time white noise; global behavior Citations:Zbl 1210.35305; Zbl 0749.60057 PDF BibTeX XML Cite \textit{D. Conus} et al., Ann. Probab. 41, No. 3B, 2225--2260 (2013; Zbl 1286.60060) Full Text: DOI arXiv Euclid OpenURL References: [1] Balázs, M., Quastel, J. and Seppäläinen, T. (2011). Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Amer. Math. Soc. 24 683-708. · Zbl 1227.60083 [2] Bertini, L. and Cancrini, N. (1995). The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 1377-1401. · Zbl 1080.60508 [3] Burkholder, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504. · Zbl 0306.60030 [4] Burkholder, D. L., Davis, B. J. and Gundy, R. F. (1972). Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability ( Univ. California , Berkeley , Calif. , 1970 / 1971), Vol. II : Probability Theory 223-240. Univ. California Press, Berkeley, CA. · Zbl 0253.60056 [5] Burkholder, D. L. and Gundy, R. F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 249-304. · Zbl 0223.60021 [6] Carlen, E. and Krée, P. (1991). \(L^{p}\) estimates on iterated stochastic integrals. Ann. Probab. 19 354-368. · Zbl 0721.60052 [7] Carmona, R. A. and Molchanov, S. A. (1994). Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 viii+125. · Zbl 0925.35074 [8] Chertkov, M., Falkovich, G., Kolokolov, I. and Lebedev, V. (1995). Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution. Phys. Rev. E (3) 51 5609-5627. [9] Conus, D. and Khoshnevisan, D. (2010). Weak nonmild solutions to some SPDEs. Preprint. Available at . · Zbl 1259.60067 [10] Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D. and Xiao, Y. (2009). A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math. 1962 . Springer, Berlin. [11] Dalang, R. C. (1999). Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4 29 pp. (electronic). · Zbl 0986.60053 [12] Davis, B. (1976). On the \(L^{p}\) norms of stochastic integrals and other martingales. Duke Math. J. 43 697-704. · Zbl 0349.60061 [13] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential. B. Theory of Martingales. North-Holland Mathematics Studies 72 . North-Holland, Amsterdam. Translated from the French by J. P. Wilson. · Zbl 0494.60002 [14] Durrett, R. (1998). Lecture Notes on Particle Systems and Percolation . Wadsworth & Brooks Cole, Pacific Grove, CA. · Zbl 0659.60129 [15] Foondun, M. and Khoshnevisan, D. (2009). Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 548-568. · Zbl 1190.60051 [16] Foondun, M. and Khoshnevisan, D. (2010). On the global maximum of the solution to a stochastic heat equation with compact-support initial data. Ann. Inst. Henri Poincaré Probab. Stat. 46 895-907. · Zbl 1210.35305 [17] Gel’fand, I. M. and Vilenkin, N. Y. (1964). Generalized Functions. Vol. 4: Applications of Harmonic Analysis . Academic Press, New York. · Zbl 0136.11201 [18] Kardar, M., Parisi, G. and Zhang, Y. C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889-892. · Zbl 1101.82329 [19] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 276 . Springer, New York. · Zbl 0559.60078 [20] Molchanov, S. A. (1991). Ideas in the theory of random media. Acta Appl. Math. 22 139-282. · Zbl 0728.73011 [21] Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 225-245. · Zbl 0749.60057 [22] Ruelle, D. (1985). The onset of turbulence: A mathematical introduction. In Turbulence , Geophysical Flows , Predictability and Climate Dynamics ( “Turbolenza e Predicibilità nella Fluidodinamica Geofisica e la Dinamica del Clima , ” Rendiconti della Scuola Internazionale di Fisica “Enrico Fermi” ). North-Holland, Amsterdam. [23] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour , XIV- 1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin. · Zbl 0608.60060 [24] Zel’dovich, Y. B., Molchanov, S. A., Ruzmaĭkin, A. A. and Sokoloff, D. D. (1988). Intermittency, diffusion, and generation in a nonstationary random medium. Sov. Sci. Rev. C Math. Phys. 7 1-110. · Zbl 0642.60039 [25] Zeldovich, Y. B., Molchanov, S. A., Ruzmaikin, A. A. and Sokolov, D. D. (1985). Intermittency of passive fields in random media. J. Exp. Theor. Phys. 89 2061-2072. [Actual journal title: Zhurnal eksperimentalnoi teoreticheskoi fiziki .] (In Russian.) [26] Zel’dovich, Y. B., Ruzmaĭkin, A. A. and Sokoloff, D. D. (1990). The Almighty Chance. World Scientific Lecture Notes in Physics 20 . World Scientific, River Edge, NJ. · Zbl 0744.60003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.