×

An integration by parts formula for Feynman path integrals. (English) Zbl 1286.81132

This paper gives a proof of the integration-by-parts relation appearing in the abstract \[ \begin{split} \int\limits_{\Omega_{x,y}} DF\left(\gamma\right)\left[p\left(\gamma\right)\right] e^{i\nu S\left(\gamma\right)} {\mathcal D}\left(\gamma\right)\\ = - \int\limits_{\Omega_{x,y}} F\left(\gamma\right) \mathrm{Div}p\left(\gamma\right) e^{i\nu S\left(\gamma\right)} {\mathcal D}\left(\gamma\right) - i \nu \int\limits_{\Omega_{x,y}} F\left(\gamma\right) DS\left(\gamma\right)\left[p\left(\gamma\right)\right] e^{i\nu S\left(\gamma\right)} {\mathcal D}\left(\gamma\right).\end{split} \] The value of this paper is the careful definition of all quantities and the rigorous proof of the above formula. The authors define the path integral by a time-slicing procedure in eq.(9). The functional \(F(\gamma)\) has to be a \(m\)-smooth, where \(m\)-smoothness is defined in definition (1.1). \(p(\gamma)\) is the tangent vector field to the path \(\gamma\) and \(p(\gamma)\) has to be an \(m'\)-admissible vector field, where \(m'\)-admissibility is defined in definition (3.1). Furthermore the authors require that two out of the three quantities \(DF(\gamma)[p(\gamma)]\), \(F(\gamma) \mathrm{Div}p(\gamma)\) or \(F(\gamma) DS(\gamma)[p(\gamma)]\) are \(F\)-integrable, where the concept of \(F\)-integrability is defined by requiring that the corresponding time-slicing limit of the path-integral exists. In addition, there is the condition \(T \leq \mu\), which relates the path intervall \([0,T]\) and the potential \(V(t,x)\) through eq.(5) and eq.(6). Under these conditions the authors prove the integration-by-parts relation.
The last section of the paper gives an application of the integration-by-parts relation towards the semiclassical asymptotic behaviour of Feynman path integrals.

MSC:

81S40 Path integrals in quantum mechanics
35A08 Fundamental solutions to PDEs
46T12 Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds
58D30 Applications of manifolds of mappings to the sciences
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. D. Elworthy, Gaussian measures on Banach spaces and manifolds, In: Global Analysis and its Applications. Vol.,II, Lectures International Semi. Course, International Center ofTheoretical Physics, Trieste, 1972, Internat. Atomic Energy Agency, Vienna, 1974, pp. 151-166. · Zbl 0319.58007
[2] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics, 20 (1948), 367-387. · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[3] D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979), 41-96. · Zbl 0418.35032 · doi:10.1007/BF02791062
[4] D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600. · Zbl 0457.35026 · doi:10.1215/S0012-7094-80-04734-1
[5] D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J., 124 (1991), 61-97. · Zbl 0728.41031
[6] D. Fujiwara, Mathematical method for Feynman path integrals, Springer Tokyo, in Japanese, 1999.
[7] D. Fujiwara and N. Kumano-go, Smooth functional derivatives in Feynman path integrals by time slicing approximation, Bull. Sci. Math., 129 (2005), 57-79. · Zbl 1070.81083 · doi:10.1016/j.bulsci.2004.09.003
[8] D. Fujiwara and N. Kumano-go, An improved remainder estimate of stationary phase method for some oscillatory integrals over a space of large dimension, Funkcial. Ekvac., 49 (2006), 59-86. · Zbl 1113.81091 · doi:10.1619/fesi.49.59
[9] D. Fujiwara and N. Kumano-go, The second term of the semi-classical asymptotic expansion for Feynman path integrals with integrand of polynomial growth, J. Math. Soc. Japan, 58 (2006), 837-867. · Zbl 1102.81056 · doi:10.2969/jmsj/1156342040
[10] D. Fujiwara and T. Tsuchida, The time slicing approximation of the fundamental solution for the Schrödinger equation with electromagnetic fields, J. Math. Soc. Japan, 49 (1997), 299-327. · Zbl 0904.35004 · doi:10.2969/jmsj/04920299
[11] L. Hörmander, Fourier integral operators. I, Acta Math., 127 (1971), 79-183. · Zbl 0212.46601 · doi:10.1007/BF02392052
[12] L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Springer-Verlag, Berlin, 1983.
[13] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation, Bull. Sci. Math., 128 (2004), 197-251. · Zbl 1059.81110 · doi:10.1016/j.bulsci.2004.01.002
[14] H. H. Kuo, Integration theory on infinite-dimensional manifolds, Trans. Amer. Math. Soc., 159 (1971), 57-78. · Zbl 0222.28007 · doi:10.2307/1995998
[15] C. Morette, On the definition and approximation of Feynman’s path integrals, Physical Rev. (2), 81 (1951), 848-852. · Zbl 0042.45506 · doi:10.1103/PhysRev.81.848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.