×

Combinations of the method of fundamental solutions for general inverse source identification problems. (English) Zbl 1287.35103

Summary: In this paper, a new general scheme, based on the method of fundamental solutions, is presented for inverse source identification problems. This is achieved by coupling a linear combination of fundamental solutions and radial basis functions associated with particular solutions. Under this scheme, we can determine harmonic and nonharmonic source terms from partially accessible boundary measurements. Numerical results for several general inverse source identification problems show that the proposed numerical algorithm is simple, accurate, stable and computationally efficient.

MSC:

35R30 Inverse problems for PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] ()
[2] El, B.A., Inverse source problem in an anisotropic medium by boundary measurements, Inverse prob., 21, 1487-1506, (2005) · Zbl 1086.35133
[3] Nara, T.; Ando, S., A projective method for an inverse source problem of the Poisson equation, Inverse prob., 19, 355-369, (2003) · Zbl 1221.35451
[4] Ling L, L.; Hon, Y.C.; Yamamoto, M., Inverse source identification for Poisson equation, Inverse prob. sci. eng., 13, 433-447, (2005) · Zbl 1194.65130
[5] Karageorghis, A.; Lesnic, D.; Marin, L., A survey of applications of the MFS to inverse problems, Inverse prob. sci. eng., 19, 309-336, (2011) · Zbl 1220.65157
[6] Kagawa, Y.; Sun, Y.H.; Matsumoto, O., Inverse solution for Poisson equations using DRM boundary element models – identification of space charge distribution, Inverse prob. sci., 1, 247-265, (1995)
[7] Ohnaka, K.; Uosaki, K., Boundary element approach for identification of point forces of distributed parameter systems, Int. J. control, 49, 119-127, (1999) · Zbl 0667.93024
[8] Trlep, M.; Hamler, A.; Hribernik, B., The use of DRM for inverse problems of Poisson equation, IEEE trans. magn., 36, 1649-1652, (2000)
[9] Matsumoto, T.; Tanaka, M.; Tsukamoto, T., Identifications of source distributions using BEM with dual reciprocity method, (), 127-135
[10] Jin, B.T.; Marin, L., The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction, Int. J. numer. meth. eng., 69, 1570-1589, (2007) · Zbl 1194.80101
[11] Cho, H.A.; Golberg, M.A.; Muleshkov, A.S.; Li, X., Trefftz methods for time dependent partial differential equations, CMC-comput. mater. con., 1, 1-37, (2004)
[12] Tsai, C.C.; Young, D.L.; Chiang, J.H.; Lo, D.C., The method of fundamental solutions for solving options pricing models, Appl. math. comput., 181, 390-401, (2006) · Zbl 1142.91568
[13] Li, X., Convergence of the method of fundamental solutions for solving the boundary value problem of modified Helmholtz equation, Appl. math. comput., 159, 113-125, (2004) · Zbl 1079.65107
[14] Chen, J.T.; Tsai, J.J.; Lee, Y.T.; Lee, J.W., Study on connections of the MFS, Trefftz method, indirect BIEM and invariant MFS in the three-dimensional Laplace problems containing spherical boundaries, Appl. math. comput., 218, 4056-4074, (2011) · Zbl 1415.65275
[15] Poullikkas, A.; Karageorghis, A.; Georgiou, G., Method of fundamental solutions for harmonic and biharmonic boundary value problems, Comput. mech., 21, 416-423, (1998) · Zbl 0913.65104
[16] Alves, C.J.S.; Antunes, R.R.S., The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates, Int. J. numer. meth. eng., 77, 177-194, (2009) · Zbl 1257.74096
[17] ()
[18] Young, D.L.; Jane, S.J.; Fan, C.M.; Murugesan, K.; Tsai, C.C., The method of fundamental solutions for 2D and 3D Stokes problems, J. comput. phys., 211, 1-8, (2006) · Zbl 1160.76332
[19] Jin, B.T.; Zheng, Y.; Marin, L., The method of fundamental solutions for inverse boundary value problems associated with the steady-state heat conduction in anisotropic media, Int. J. numer. meth. eng., 65, 1865-1891, (2006) · Zbl 1124.80400
[20] Wei, T.; Hon, Y.C.; Ling, L., Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators, Eng. anal. bound elem., 31, 373-385, (2007) · Zbl 1195.65206
[21] Chen, C.W.; Young, D.L.; Tsai, C.C.; Murugesan, K., The method of fundamental solutions for inverse 2D Stokes problems, Comput. mech., 37, 2-14, (2005) · Zbl 1158.76392
[22] Zeb, A.; Ingham, D.B.; Lesnic, D., The method of fundamental solutions for a biharmonic inverse boundary determination problem, Comput. mech., 42, 371-379, (2008) · Zbl 1163.65078
[23] Chen, C.S.; Lee, S.W.; Huang, C.S., The method of particular solutions using Chebyshev polynomial based functions, Int. J. comput. meth., 4, 15-32, (2007) · Zbl 1198.65245
[24] Wen, P.H.; Chen, C.S., The method of particular solutions for solving scalar wave equations, Int. J. numer. meth. eng., 26, 1878-1889, (2010) · Zbl 1208.65153
[25] ()
[26] Aleksidze, M.A., On approximate solutions of a certain mixed boundary value problem in the theory of harmonic functions, Differ. equ., 2, 515-518, (1966) · Zbl 0191.39204
[27] Hansen, P.C., Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. algorithms, 6, 1-35, (1994) · Zbl 0789.65029
[28] Drombosky, T.W.; Meyer, A.L.; Ling, L., Applicability of the method of fundamental solutions, Eng. anal. bound elem., 33, 637-643, (2009) · Zbl 1244.65220
[29] Wang, F.W.; Ling, L.; Chen, W., Effective condition number for boundary knot method, CMC-comput. mater. con., 12, 57-70, (2009)
[30] Chen, C.S.; Hokwon, A.C.; Golberg, M.A., Some comments on the ill-conditioning of the method of fundamental solutions, Eng. anal. bound elem., 30, 405-410, (2006) · Zbl 1187.65136
[31] Golub, G.H.; Hansen, P.C.; Leary, D.P.O., Tikhonov regularization and total least squares, SIAM J. matrix anal. appl., 21, 1, 185-194, (1999) · Zbl 0945.65042
[32] Wang, F.Z., Applicability of the boundary particle method, CMES-comput. model. eng. sci., 80, 3, 201-217, (2011) · Zbl 1357.65306
[33] Wang, F.Z.; Chen, W.; Jiang, X.R., Investigation of regularization techniques for boundary knot method, Int. J. numer. meth. eng., 26, 1868-1877, (2010) · Zbl 1208.65173
[34] Chen, W.; Wang, F.Z., A method of fundamental solutions without fictitious boundary, Eng. anal. bound elem., 34, 530-532, (2010) · Zbl 1244.65219
[35] ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.