×

Affine translation surfaces in Euclidean 3-space. (English) Zbl 1287.53004

Summary: In this paper we define affine translation surfaces and classify minimal affine translation surfaces in three dimensional Euclidean space.

MSC:

53A05 Surfaces in Euclidean and related spaces
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] W. Blaschke, Vorlesungen über Differentialgeometrie I , Springer, Berlin, 1921. · JFM 48.0837.01
[2] W. Blaschke, Vorlesungen über Differentialgeometrie II , Springer, Berlin, 1923. · JFM 49.0499.01
[3] W. Blaschke, Vorlesungen über Differentialgeometrie III , Springer, Berlin, Heidelberg, New York, 1929. · JFM 55.0422.01
[4] A. M. Li, U. Simon and G. S. Zhao, Global affine differential geometry of hypersurfaces , de Gruyter Expositions in Mathematics, 11, de Gruyter, Berlin, 1993. · Zbl 0808.53002
[5] K. Kenmotsu, Surfaces with constant mean curvature , translated from the 2000 Japanese original by Katsuhiro Moriya and revised by the author, Translations of Mathematical Monographs, 221, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1042.53001
[6] K. Kenmotsu, Surfaces of revolution with periodic mean curvature, Osaka J. Math. 40 (2003), no. 3, 687-696. · Zbl 1041.53005
[7] U. Simon, A. Schwenk-Schellschmidt and H. Viesel, Introduction to the affine differential geometry of hypersurfaces , Lecture Notes of the Science University of Tokyo, Sci. Univ. Tokyo, Tokyo, 1991. · Zbl 0780.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.