zbMATH — the first resource for mathematics

Set-valued Hardy-Rogers type contraction in 0-complete partial metric spaces. (English) Zbl 1287.54045
Summary: In this paper we introduce set-valued Hardy-Rogers type contractions in 0-complete partial metric spaces and prove the corresponding fixed point theorem. Our results generalize, extend, and unify several known results, in particular the recent Nadler’s fixed point theorem in the context of complete partial metric spaces established by H. Aydi et al. [Topology Appl. 159, No. 14, 3234–3242 (2012; Zbl 1252.54027)]. As an application of our results, a homotopy theorem for such mappings is derived. Also, some examples are included which show that our generalization is proper.

54H25 Fixed-point and coincidence theorems (topological aspects)
Full Text: DOI
[1] G. E. Hardy and T. D. Rogers, “A generalization of a fixed point theorem of Reich,” Canadian Mathematical Bulletin, vol. 16, pp. 201-206, 1973. · Zbl 0266.54015 · doi:10.4153/CMB-1973-036-0 · eudml:43870
[2] B. E. Rhoades, “A comparison of various definitions of contractive mappings,” Transactions of the American Mathematical Society, vol. 226, pp. 257-290, 1977. · Zbl 0365.54023 · doi:10.2307/1997954
[3] S. B. Nadler Jr., “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30, pp. 475-488, 1969. · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[4] S. G. Matthews, “Partial metric topology,” in Papers on General Topology and Applications (Flushing, NY, 1992), vol. 728 of Annals of the New York Academy of Sciences, pp. 183-197, The New York Academy of Sciences, New York, NY, USA, 1994. · Zbl 0911.54025 · doi:10.1111/j.1749-6632.1994.tb44144.x
[5] M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, “Partial metric spaces,” American Mathematical Monthly, vol. 116, no. 8, pp. 708-718, 2009. · Zbl 1229.54037 · doi:10.4169/193009709X460831
[6] S. Romaguera, “A Kirk type characterization of completeness for partial metric spaces,” Fixed Point Theory and Applications, vol. 2010, Article ID 493298, 6 pages, 2010. · Zbl 1193.54047 · doi:10.1155/2010/493298 · eudml:230077
[7] H. Aydi, M. Abbas, and C. Vetro, “Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces,” Topology and Its Applications, vol. 159, no. 14, pp. 3234-3242, 2012. · Zbl 1252.54027 · doi:10.1016/j.topol.2012.06.012
[8] Z. Kadelburg, H. K. Nashine, and S. Radenović, “Fixed point results under various contractive conditions in partial metric spaces,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 107, no. 2, pp. 241-256, 2013. · Zbl 1310.54051 · doi:10.1007/s13398-012-0066-6
[9] I. Altun, F. Sola, and H. Simsek, “Generalized contractions on partial metric spaces,” Topology and Its Applications, vol. 157, no. 18, pp. 2778-2785, 2010. · Zbl 1207.54052 · doi:10.1016/j.topol.2010.08.017
[10] S. Romaguera, “Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces,” Applied General Topology, vol. 12, no. 2, pp. 213-220, 2011. · Zbl 1241.54037 · agt.webs.upv.es
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.