Forde, Martin; Pogudin, Andrey; Zhang, Hongzhong Hitting times, occupation times, trivariate laws and the forward Kolmogorov equation for a one-dimensional diffusion with memory. (English) Zbl 1287.60095 Adv. Appl. Probab. 45, No. 3, 860-875 (2013). Apparently motivated by the application in finance, the authors consider one-dimensional diffusions with memory, described by \(dX_t= \sigma(X_t, \underline X_t)\,dW_t\), \(\underline X_t:= m\wedge\text{inf}_{0\leq s\leq t}X_s\), \((W_t)_{t\geq 0}\) the Wiener process, \(X_t\) strictly positive, \(\sigma(x,m)\) continuous with \(0<\sigma(x,m)<\infty\), \(x> 0\) and \(m\geq 0\), \(m< x\). Extending the time-change argument known for ordinary one-dimensional diffusions, they prove weak existence and uniqueness in law of the solution. Using Itō’s formula and the optimal sampling theorem, the expected time to hit either of the two barriers for \(X\) is calculated. A necessary and sufficient condition is given for the time of hitting \(0\) to be finite, and an extension of the classical occupation time formula is derived. The authors further prove the existence of the joint distribution of \(X\) and its minimum and characterize it in terms of two independent tied-down Brownian meanders or equivalently, two independent Bessel-3 bridges. Finally, \(X\) is shown to be a weak solution to a forward Kolmogorov equation, and a new forward equation for down-and-out call options is derived. Reviewer: Heinrich Hering (Rockenberg) Cited in 4 Documents MSC: 60J60 Diffusion processes 47D07 Markov semigroups and applications to diffusion processes Keywords:one-dimensional diffusion; occupation time formula; stochastic functional differential equation; diffusion with memory PDF BibTeX XML Cite \textit{M. Forde} et al., Adv. Appl. Probab. 45, No. 3, 860--875 (2013; Zbl 1287.60095) Full Text: DOI Euclid References: [1] Bertoin, J., Chaumont, L. and Pitman, J. (2003). Path transformations of first passage bridges. Electron. Commun. Prob. 8 , 155-166. · Zbl 1061.60083 [2] Bertoin, J., Pitman, J., and Ruiz de Chavez, J. (1999). Constructions of a Brownian path with a given minimum. Electron. Commun. Prob. 4 , 31-37. · Zbl 1021.60060 [3] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion–Facts and Formulae , 2nd edn. Birkhäuser, Basel. · Zbl 1012.60003 [4] Brunick, G. and Shreve, S. (2012). Matching an Itô process by a solution of a stochastic differential equation. Submitted. · Zbl 1284.60109 [5] Carr, P. (2009). Local variance gamma option pricing model. Presentation, Bloomberg/Courant Institute. [6] Cox, A. M. G., Hobson, D. and Obłój, J. (2011). Time-homogeneous diffusions with a given marginal at a random time. ESAIM Prob. Statist. 15 , S11-S24. [7] Dermann, E., Ergener, D. and Kani, I. (1995). Static options replication. J. Derivatives 2 , 78-95. [8] Durrett, R. T., Iglehart, D. L. and Miller, D. R. (1977). Weak convergence to Brownian meander and Brownian excursion. Ann. Prob. 5 , 117-129. · Zbl 0356.60034 [9] Figalli, A. (2008). Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254 , 109-153. · Zbl 1169.60010 [10] Forde, M. (2011). A diffusion-type process with a given joint law for the terminal level and supremum at an independent exponential time. Stoch. Process. Appl. 121 , 2802-2817. · Zbl 1235.60107 [11] Imhof, J.-P. (1984). Density factorizations for Brownian motion, meander and the three dimensional Bessel process, and applications. J. Appl. Prob. 21 , 500-510. · Zbl 0547.60081 [12] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus , 2nd edn. Springer, New York. · Zbl 0734.60060 [13] Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes . Academic Press, New York. · Zbl 0469.60001 [14] Mao, X. (1997). Stochastic Differential Equations and Their Applications . Horwood Publishing, Chichester. · Zbl 0892.60057 [15] Mohammed, S. E. A. (1984). Stochastic Functional Differential Equations . Pitman, Boston, MA. · Zbl 0584.60066 [16] Pauwels, E. J. (1987). Smooth first-passage densities for one-dimensional diffusions. J. Appl. Prob. 24 , 370-377. · Zbl 0622.60063 [17] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd edn. Springer, Berlin. · Zbl 0917.60006 [18] Rogers, L. C. G. (1985). Smooth transition densities for one-dimensional diffusions. Bull. London Math. Soc. 17 , 157-161. · Zbl 0604.60077 [19] Rogers, L. C. G. (1993). The joint law of the maximum and the terminal value of a martingale. Prob. Theory Relat. Fields 95 , 451-466. · Zbl 0794.60042 [20] Rogers, L. C. G. (2012). Extremal martingales. Talk at EPSRC Symposium Workshop - Optimal Stopping, Optimal Control and Finance. [21] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes and Martingales , Vol. 2. John Wiley, New York. · Zbl 0977.60005 [22] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes . Springer, Berlin. · Zbl 0426.60069 [23] Williams, D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. London Math. Soc. 28 , 738-768. · Zbl 0326.60093 [24] Williams, D. (1991). Probability with Martingales . Cambridge University Press. · Zbl 0722.60001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.