×

zbMATH — the first resource for mathematics

Control systems on the orthogonal group \(SO(4)\). (English) Zbl 1287.93021
Summary: We classify the left-invariant control affine systems evolving on the orthogonal group \(SO(4)\). The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.

MSC:
93B27 Geometric methods
22E60 Lie algebras of Lie groups
93B05 Controllability
93B52 Feedback control
93B17 Transformations
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Adams, R.M., Biggs, R., Remsing, C.C.: On the equivalence of control systems on the orthogonal group SO(4). Recent Researches in Automatic Control, Systems Science and Communications, 2012, 54-59, WSEAS Press.
[2] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2). Control Cybernet., 41, 2012, 513-524. · Zbl 1318.93028
[3] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. 2004, Springer. · Zbl 1062.93001
[4] Aron, A., Moş, I., Csaky, A., Puta, M.: An optimal control problem on the Lie group SO(4). Int. J. Geom. Methods Mod. Phys., 5, 2008, 319-327. · Zbl 1159.49002 · doi:10.1142/S0219887808002795
[5] Biggs, J.D., Holderbaum, W.: Singularities of optimal control problems on some six dimensional Lie groups. IEEE Trans. Automat. Control, 52, 2007, 1027-1038. · Zbl 1366.93115 · doi:10.1109/TAC.2007.899010
[6] Biggs, R., Remsing, C.C.: A category of control systems. An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368. · Zbl 1274.93062
[7] Biggs, R., Remsing, C.C.: A note on the affine subspaces of three-dimensional Lie algebras. Bul. Acad. Ştiinţe Repub. Mold. Mat., 3, 2012, 45-52. · Zbl 1291.93095 · www.math.md
[8] Biggs, R., Remsing, C.C.: On the equivalence of cost-extended control systems on Lie groups. Recent Researches in Automatic Control, Systems Science and Communications, 2012, 60-65, WSEAS Press. · Zbl 1305.93007
[9] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups. An. Ştiinţe. Univ. Al. I. Cuza Iaşi. Mat., 59, 2013, 399-414. · Zbl 1299.93049
[10] Biggs, R., Remsing, C.C.: Cost-extended control systems on Lie groups. Mediterr. J. Math., To appear in Mediterr. J. Math. DOI: 10.1007/s00009-013-0355-0. · Zbl 1305.93007 · doi:10.1007/s00009-013-0355-0
[11] Biggs, R., Remsing, C.C.: Equivalence of control systems on the pseudo-orthogonal group \(SO(2,1)_0\). preprint. · Zbl 1305.93007
[12] Biggs, R., Remsing, C.C.: On the equivalence of control systems on Lie groups. preprint. · Zbl 1305.93007 · doi:10.1007/s00009-013-0355-0
[13] Birtea, P., Caşu, I., Raţiu, T.S., Turhan, M.: Stability of equilibria for the \(\mathfrak{so}(4)\) free rigid body. J. Nonlinear Sci., 22, 2012, 187-212. · Zbl 1300.70005 · doi:10.1007/s00332-011-9113-2 · arxiv:0812.3415
[14] Bogoyavlensky, O.I.: Integrable Euler equations on SO(4) and their physical applications. Commun. Math. Phys., 93, 1984, 417-436. · Zbl 0567.58012 · doi:10.1007/BF01258538
[15] D’Alessandro, D.: The optimal control problem on SO(4) and its applications to quantum control. IEEE Trans. Automat. Control, 47, 2002, 87-92. · Zbl 1364.93144 · doi:10.1109/9.981724
[16] Isidori, A.: Nonlinear Control Systems (Third Edition). 1995, Springer. · Zbl 0878.93001
[17] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems. Nonlinear Controllability and Optimal Control, 1990, 177-218, Marcel Dekker. · Zbl 0712.93027
[18] Jovanović, B.: Non-holonomic geodesic flows on Lie groups and the integrable Suslov problem on SO(4). J. Phys. A: Math. Gen., 31, 1998, 1415-1422. · Zbl 0945.70014 · doi:10.1088/0305-4470/31/5/011
[19] Jurdjevic, V.: Geometric Control Theory. 1997, Cambridge University Press. · Zbl 0940.93005
[20] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Diff. Equations, 12, 1972, 313-329. · Zbl 0237.93027 · doi:10.1016/0022-0396(72)90035-6
[21] Knapp, A. W.: Lie Groups Beyond an Introduction (Second Edition). 2005, Birkhäuser. · Zbl 0862.22006
[22] Komarov, I.V., Kuznetsov, V.B.: Kowalewski’s top on the Lie algebras \(\mathfrak{o} (4)\), \(\mathfrak{e} (3)\) and \(\mathfrak{o} (3,1)\). J. Phys. A: Math. Gen., 23, 1990, 841-846. · Zbl 0714.58024 · doi:10.1088/0305-4470/23/6/010
[23] Linton, C., Holderbaum, W., Biggs, J.: Rigid body trajectories in different 6D spaces. ISRN Math. Phys., 2012. · Zbl 1360.70004 · doi:10.5402/2012/467520
[24] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems. 1996, Springer.
[25] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach. Chaos in Automatic Control, 2006, 137-262, CRC Press. · Zbl 1203.93039
[26] Sachkov, Y.L.: Control theory on Lie groups. J. Math. Sci., 156, 2009, 381-439. · Zbl 1211.93038 · doi:10.1007/s10958-008-9275-0
[27] Sokolov, V.V., Wolf, T.: Integrable quadratic classical Hamiltonians on \(\mathfrak{so} (4)\) and \(\mathfrak{so} (1,3)\). J. Phys. A: Math. Gen., 39, 2006, 1915-1926. · Zbl 1087.37047 · doi:10.1088/0305-4470/39/8/009 · arxiv:nlin/0405066
[28] Sussmann, H.J.: Lie brackets, real analyticity and geometric control. Differential Geometric Control Theory, 1983, 1-116, Birkhäuser. · Zbl 0545.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.