zbMATH — the first resource for mathematics

Cluster characters for cluster categories with infinite-dimensional morphism spaces. (English) Zbl 1288.13016
Cluster algebras, invented by S. Fomin and A. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017)] in order to study total positivity in algebraic groups and canonical bases in quantum groups, are a class of commutative algebras endowed with a distinguished set of generators, the cluster variables. The cluster variables are grouped into finite subsets, called clusters, and are defined recursively from initial variables through mutation on the clusters. Cluster categories [A. B. Buan et al., Adv. Math. 204, No. 2, 572–618 (2006; Zbl 1127.16011)] are certain categories of representations of finite dimensional algebras which were introduced to “categorify” cluster algebras. The Caldero–Chapoton map was introduced in [P. Caldero and F. Chapoton, Comment. Math. Helv. 81, No. 3, 595–616 (2006; Zbl 1119.16013)] to formalize the connection between the cluster algebras and the cluster categories. Indeed, using the Caldero–Chapoton map, [P. Caldero and B. Keller, Ann. Sci. Éc. Norm. Supér. (4) 39, No. 6, 983–1009 (2006; Zbl 1115.18301)] established a bijection between the indecomposable rigid objects of a cluster category and the cluster variables of the corresponding cluster algebra.
Using the notion of quiver with potential [H. Derksen et al., Sel. Math., New Ser. 14, No. 1, 59–119 (2008; Zbl 1204.16008)], C. Amiot generalized the definition of cluster category [C. Amiot, Ann. Inst. Fourier 59, No. 6, 2525–2590 (2009; Zbl 1239.16011)]. In the case when the quiver with potential is Jacobi-finite, the cluster character introduced in [Y. Palu, Ann. Inst. Fourier 58, No. 6, 2221–2248 (2008; Zbl 1154.16008)] sends reachable indecomposable rigid objects of the (generalized) cluster category to cluster variables. In their works, the categories encountered are \(\text{Hom}{}\)-finite and 2-Calabi-Yau.
In the paper under review, the author studies a version of Y. Palu’s cluster characters for \(\text{Hom}{}\)-infinite cluster categories \(\mathcal{C}\), that is, cluster categories with possibly infinite-dimensional morphism spaces. This cluster character \(L \mapsto X'_L\) is not defined for all objcts \(L\) but only for those in a suitable mutation-invariant subcategory \(\mathcal{D}\). As an application, the author proves that this cluster character indeed realises in full generality a surjection from the set of indecomposable rigid reachable objects in \(\mathcal{D}\) to the set of cluster variables in the cluster algebra. It is worth mentioning that the author used this cluster character to prove several classical conjectures on cluster algebras in [Compos. Math. 147, No. 6, 1921–1954 (2011; Zbl 1244.13017)].

13F60 Cluster algebras
18E30 Derived categories, triangulated categories (MSC2010)
16G20 Representations of quivers and partially ordered sets
Full Text: DOI arXiv
[1] Amiot, Claire, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. inst. Fourier, 59, 6, 2525-2590, (2009) · Zbl 1239.16011
[2] Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre, Faisceaux pervers, Analyse et topologie sur LES espaces singuliers, vol. I, Astérisque, 100, 5-171, (1982) · Zbl 0536.14011
[3] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras III: upper bounds and double Bruhat cells, Duke math. J., 126, 1, 1-52, (2005) · Zbl 1135.16013
[4] Bondarko, Mikhail V., Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general) · Zbl 1303.18019
[5] Bakke Buan, Aslak; Marsh, Robert; Reineke, Markus; Reiten, Idun; Todorov, Gordana, Tilting theory and cluster combinatorics, Adv. math., 204, 2, 572-618, (2006) · Zbl 1127.16011
[6] Caldero, Philippe; Chapoton, Frédéric, Cluster algebras as Hall algebras of quiver representations, Comment. math. helv., 81, 3, 595-616, (2006) · Zbl 1119.16013
[7] Caldero, Philippe; Chapoton, Frédéric; Schiffler, Ralf, Quivers with relations arising from clusters (\(A_n\) case), Trans. amer. math. soc., 358, 3, 1347-1364, (2006) · Zbl 1137.16020
[8] Caldero, Philippe; Keller, Bernhard, From triangulated categories to cluster algebras II, Ann. sci. ec. norm. super. (4), 39, 6, 983-1009, (2006) · Zbl 1115.18301
[9] Dehy, Raika; Keller, Bernhard, On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. math. res. not. IMRN, 2008, (2008), rnn029-17 · Zbl 1144.18009
[10] Derksen, Harm; Weyman, Jerzy; Zelevinsky, Andrei, Quivers with potentials and their representations I: mutations, Selecta math. (N.S.), 14, 59-119, (2008) · Zbl 1204.16008
[11] Derksen, Harm; Weyman, Jerzy; Zelevinsky, Andrei, Quivers with potentials and their representations II: applications to cluster algebras · Zbl 1208.16017
[12] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras I: foundations, J. amer. math. soc., 15, 2, 497-529, (2002) · Zbl 1021.16017
[13] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras II: finite type classification, Invent. math., 154, 1, 63-121, (2003) · Zbl 1054.17024
[14] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras IV: coefficients, Compos. math., 143, 112-164, (2007) · Zbl 1127.16023
[15] Fu, Changjian; Keller, Bernhard, On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. amer. math. soc., 362, 859-895, (2010) · Zbl 1201.18007
[16] Geiss, Christof; Leclerc, Bernard; Schröer, Jan, Semicanonical bases and preprojective algebras, Ann. sci. ec. norm. super., 38, 193-253, (2005) · Zbl 1131.17006
[17] Geiss, Christof; Leclerc, Bernard; Schröer, Jan, Rigid modules over preprojective algebras, Invent. math., 165, 3, 589-632, (2006) · Zbl 1167.16009
[18] Geiss, Christof; Leclerc, Bernard; Schröer, Jan, Semicanonical bases and preprojective algebras II: A multiplication formula, Compos. math., 143, 1313-1334, (2007) · Zbl 1132.17004
[19] Geiss, Christof; Leclerc, Bernard; Schröer, Jan, Preprojective algebras and cluster algebras, (), 253-283 · Zbl 1203.16014
[20] Geiss, Christof; Leclerc, Bernard; Schröer, Jan, Cluster algebra structures and semicanonical bases for unipotent groups · Zbl 1131.17006
[21] Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek, Cluster algebras and Poisson geometry, Mosc. math. J., 3, 899-934, (2003) · Zbl 1057.53064
[22] Ginzburg, Victor, Calabi-Yau algebras · Zbl 1204.14004
[23] Iyama, Osamu; Reiten, Idun, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Amer. J. math., 130, 4, 1087-1149, (2008), (English summary) · Zbl 1162.16007
[24] Iyama, Osamu; Yoshino, Yuji, Mutations in triangulated categories and rigid Cohen-Macaulay modules, Invent. math., 172, 1, 117-168, (2008) · Zbl 1140.18007
[25] Keller, Bernhard, Deriving DG categories, Ann. sci. ec. norm. super., 27, 63-102, (1994) · Zbl 0799.18007
[26] Keller, Bernhard, Triangulated Calabi-Yau categories, (), 467-489 · Zbl 1202.16014
[27] Keller, Bernhard, Deformed Calabi-Yau completions · Zbl 1220.18012
[28] Bernhard Keller, Algèbres amassées et applications, in: Séminaire Bourbaki, Exposé 1014, November 2009, 27 pp.
[29] Keller, Bernhard; Reiten, Idun, Cluster tilted algebras are Gorenstein and stably Calabi-Yau, Adv. math., 211, 123-151, (2007) · Zbl 1128.18007
[30] Keller, Bernhard; Yang, Dong, Derived equivalences from mutations of quivers with potential, (June 2009), preprint
[31] Kentaro Nagao, Electronic message to B. Keller, October 2, 2009.
[32] Nagao, Kentaro, Donaldson-Thomas theory and cluster algebras · Zbl 1375.14150
[33] Palu, Yann, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. inst. Fourier, 58, 6, 2221-2248, (2008) · Zbl 1154.16008
[34] Plamondon, Pierre-Guy, Cluster algebras via cluster categories with infinite-dimensional morphism spaces · Zbl 1244.13017
[35] Zelevinsky, Andrei, What is... a cluster algebra, Notices amer. math. soc., 54, 11, 1494-1495, (2007) · Zbl 1130.13301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.