Rationality of the quotient of \(\mathbb P^2\) by finite group of automorphisms over arbitrary field of characteristic zero. (English) Zbl 1288.14009

Let \(k\) be a field of characteristic 0, and \(G\) be a finite group of automorphisms of the projective plane \(\mathbb P_{k}^2\) over \(k\), i.e., \(G\subset\text{PGL}_3(k)\). The main purpose of the article under review is to prove that the quotient variety \(\mathbb P_{k}^2/G\) is \(k\)-rational (i.e. purely transcendental over \(k\)). This result is an improvement of Castelnuovo’s rationality criterion, which requires that \(k\) is algebraically closed. As a corollary of the main result, the author obtains that if \(G\) is a finite subgroup of the general linear group \(\mathrm{GL}_3(k)\), then the field of invariants \(k(x_1,x_2,x_3)^G\) is \(k\)-rational.


14E07 Birational automorphisms, Cremona group and generalizations
14E08 Rationality questions in algebraic geometry
14L30 Group actions on varieties or schemes (quotients)
14M20 Rational and unirational varieties
13A50 Actions of groups on commutative rings; invariant theory
Full Text: DOI arXiv


[1] Ahmad H., Hajja M., Kang M., Rationality of some projective linear actions, J. Algebra, 2000, 228(2), 643-658 http://dx.doi.org/10.1006/jabr.2000.8292 · Zbl 0993.12003
[2] Artebani M., Dolgachev I., The Hesse pencil of plane cubic curves, Enseign. Math., 2009, 55(3-4), 235-273 · Zbl 1192.14024
[3] Blichfeldt H.F., Finite Collineation Groups, University of Chicago Press, Chicago, 1917
[4] Bogomolov F.A., The Brauer group of quotient spaces by linear group actions, Math. USSR-Izv., 1988, 30(3), 455-485 http://dx.doi.org/10.1070/IM1988v030n03ABEH001024 · Zbl 0679.14025
[5] Bogomolov F.A., Katsylo P.I., Rationality of some quotient varieties, Mat. Sb. (N.S.), 1985, 126(168)(4), 584-589 (in Russian) · Zbl 0591.14040
[6] Borel A., Linear Algebraic Groups, 2nd ed., Grad. Texts in Math., 126, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0941-6
[7] Coray D.F., Tsfasman M.A., Arithmetic on singular Del Pezzo surfaces, Proc. Lond. Math. Soc., 1988, 57(1), 25-87 http://dx.doi.org/10.1112/plms/s3-57.1.25 · Zbl 0653.14018
[8] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Basel, 2009, 443-548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11 · Zbl 1219.14015
[9] Dolgachev I.V., Iskovskikh V.A., On elements of prime order in the plane Cremona group over a perfect field, Int. Math. Res. Not. IMRN, 2009, 18, 3467-3485 · Zbl 1188.14007
[10] Endô S., Miyata T., Invariants of finite abelian groups, J. Math. Soc. Japan, 1973, 25, 7-26 http://dx.doi.org/10.2969/jmsj/02510007 · Zbl 0245.20007
[11] Hajja M., Rationality of finite groups of monomial automorphisms of k(x; y), J. Algebra, 1987, 109(1), 46-51 http://dx.doi.org/10.1016/0021-8693(87)90162-1
[12] Hoshi A., Kang M., Unramified Brauer groups for groups of order p5, preprint aviable at http://arxiv.org/abs/1109.2966
[13] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17-39 http://dx.doi.org/10.1070/IM1980v014n01ABEH001064 · Zbl 0427.14011
[14] Iskovskikh V.A., Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Russian Math. Surveys, 1996, 51(4), 585-652 http://dx.doi.org/10.1070/RM1996v051n04ABEH002962 · Zbl 0914.14005
[15] Lenstra H.W. Jr., Rational functions invariant under a finite abelian group, Invent. Math., 1974, 25(3-4), 299-325 http://dx.doi.org/10.1007/BF01389732
[16] Manin Ju.I., Rational surfaces over perfect fields II, Mat. Sb., 1967, 1(2), 141-168 http://dx.doi.org/10.1070/SM1967v001n02ABEH001972 · Zbl 0182.23701
[17] Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Math. Library, 4, North-Holland, Amsterdam-London, 1974
[18] Miller G.A., Blichfeldt H.F., Dickson L.E., Theory and Applications of Finite Groups, Dover, New York, 1961 · Zbl 0098.25103
[19] Moravec P., Unramified Brauer groups of finite and infinite groups, Amer. J. Math., 2012, 134(6), 1679-1704 http://dx.doi.org/10.1353/ajm.2012.0046 · Zbl 1346.20072
[20] Noether E., Rationale Functionenkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung, 1913, 22, 316-319 · JFM 44.0496.02
[21] Prokhorov Yu.G., Fields of invariants of finite linear groups, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 245-273 http://dx.doi.org/10.1007/978-0-8176-4934-0_10
[22] Saltman D.J., Noether’s problem over an algebraically closed field, Invent. Math., 1984, 77(1), 71-84 http://dx.doi.org/10.1007/BF01389135 · Zbl 0546.14014
[23] Shephard G.C., Todd J.A., Finite unitary reflection groups, Canadian J. Math., 1954, 6, 274-304 http://dx.doi.org/10.4153/CJM-1954-028-3 · Zbl 0055.14305
[24] Swan R.G., Invariant rational functions and a problem of Steenrod, Invent. Math., 1969, 7, 148-158 http://dx.doi.org/10.1007/BF01389798 · Zbl 0186.07601
[25] Voskresenskii V.E., On two-dimensional algebraic tori II, Math. USSR-Izv., 1967, 1(3), 691-696 http://dx.doi.org/10.1070/IM1967v001n03ABEH000580 · Zbl 0162.52502
[26] Voskresenskii V.E., Fields of invariants for abelian groups, Russian Math. Surveys, 1973, 28(4), 79-105 http://dx.doi.org/10.1070/RM1973v028n04ABEH001594 · Zbl 0289.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.