×

zbMATH — the first resource for mathematics

Generalized Weyl theorem and tensor product. (English) Zbl 1288.47020
Ukr. Math. J. 64, No. 9, 1464-1474 (2013); translation from Ukr. Mat. Zh. 64, No. 9, 1289-1296 (2012).
The author considers relations between different types of spectra of linear operators \(A, B\) and their tensor product \(A\otimes B\). In particular, he proves a generalized \(a\)-Browder theorem, a generalized \(a\)-Weyl theorem, and the so-called \((gw)\) property for \(A\otimes B\).

MSC:
47A80 Tensor products of linear operators
47A10 Spectrum, resolvent
47A53 (Semi-) Fredholm operators; index theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer (2004). · Zbl 1077.47001
[2] P. Aiena, J. Guillen, and P. Peña, ”Property (w) for perturbations of polaroid operators,” Linear Alg. Appl., 428, 1791–1802 (2008). · Zbl 1136.47003 · doi:10.1016/j.laa.2007.10.022
[3] P. Aiena and P. Peña, ”Variations on Weyl’s theorem,” J. Math. Anal. Appl., 324, No. 1, 566–579 (2006). · Zbl 1101.47001 · doi:10.1016/j.jmaa.2005.11.027
[4] P. Aiena, M. T. Biondi, and F. Villafañe, ”Property (w) and perturbations. III,” J. Math. Anal. Appl., 353, 205–214 (2009). · Zbl 1171.47011 · doi:10.1016/j.jmaa.2008.11.081
[5] M. Amouch and H. Zguitti, ”On the equivalence of Browder’s and generalized Browder’s theorem,” Glasgow Math. J., 48, 179–185 (2006). · Zbl 1097.47012 · doi:10.1017/S0017089505002971
[6] M. Amouch and M. Berkani, ”On the property (gw),” Mediterr. J. Math., 5, 371–378 (2008). · Zbl 1188.47011 · doi:10.1007/s00009-008-0156-z
[7] M. Amouch and H. Zguitti, ”B-Fredholm and Drazin invertible operators through localized SVEP,” Math. Bohemica, 136, 39–49 (2011). · Zbl 1216.47018
[8] M. Berkani and M. Sarih, ”On semi B-Fredholm operators,” Glasgow Math. J., 43, No. 3, 457–465 (2001). · Zbl 0995.47008 · doi:10.1017/S0017089501030075
[9] M. Berkani, ”B-Weyl spectrum and poles of the resolvent,” J. Math. Anal. Appl., 272, 596–603 (2002). · Zbl 1043.47004 · doi:10.1016/S0022-247X(02)00179-8
[10] M. Berkani and J. Koliha, ”Weyl type theorems for bounded linear operators,” Acta Sci. Math. (Szeged), 69, 359–376 (2003). · Zbl 1050.47014
[11] M. Berkani, ”On the equivalence of Weyl theorem and generalized Weyl theorem,” Acta Math. Sinica, 272, 103–110 (2007). · Zbl 1116.47015 · doi:10.1007/s10114-005-0720-4
[12] B. P. Duggal, ”SVEP and generalized Weyl’s theorem,” Mediterr. J. Math., 4, 309–320 (2007). · Zbl 1145.47003 · doi:10.1007/s00009-007-0120-3
[13] B. P. Duggal, S. V. Djordjević, and C. S. Kubrusly, ”On the a-Browder and a-Weyl spectra of tensor products,” Rend. Circ. Mat. Palermo, 59, 473–481 (2010). · Zbl 1241.47016 · doi:10.1007/s12215-010-0035-x
[14] B. P. Duggal, ”Tensor product and property (w),” Rend. Circ. Mat. Palermo, DOI: 10.1007/s12215-011-0023-9 .
[15] C. S. Kubrusly and B. P. Duggal, ”On Weyl and Browder spectra of tensor product,” Glasgow Math. J., 50, 289–302 (2008). · Zbl 1136.47013 · doi:10.1017/S0017089508004205
[16] V. Rakocević, ”On a class of operators,” Math. Vesn., 37, 423–426 (1985). · Zbl 0596.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.