×

Tropical combinatorics and Whittaker functions. (English) Zbl 1288.82022

Summary: We establish a fundamental connection between the geometric Robinson-Schensted-Knuth (RSK) correspondence and \(\mathrm{GL}(N,\mathbb R)\)-Whittaker functions, analogous to the well-known relationship between the RSK correspondence and Schur functions. This gives rise to a natural family of measures associated with \(\mathrm{GL}(N,\mathbb R)\)-Whittaker functions which are the analogues in this setting of the Schur measures on integer partitions. The corresponding analogue of the Cauchy-Littlewood identity can be seen as a generalization of an integral identity for \(\mathrm{GL}(N,\mathbb R)\)-Whittaker functions due to D. Bump [Automorphic forms on \(\mathrm{GL}(3,\mathbb R)\). Berlin etc.: Springer (1984; Zbl 0543.22005)] and E. Stade [Isr. J. Math. 127, 201–219 (2002; Zbl 1032.11020)]. As an application, we obtain an explicit integral formula for the Laplace transform of the law of the partition function associated with a 1-dimensional directed polymer model with log-gamma weights recently introduced by one of the authors.

MSC:

82B23 Exactly solvable models; Bethe ansatz
60B20 Random matrices (probabilistic aspects)
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
82D60 Statistical mechanics of polymers
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] D. Aldous and P. Diaconis, Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem , Bull. Amer. Math. Soc. (N.S.) 36 (1999), 413-432. · Zbl 0937.60001 · doi:10.1090/S0273-0979-99-00796-X
[2] J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations , J. Amer. Math. Soc. 12 (1999), 1119-1178. · Zbl 0932.05001 · doi:10.1090/S0894-0347-99-00307-0
[3] M. Balázs, E. Cator, and T. Seppäläinen, Cube root fluctuations for the corner growth model associated to the exclusion process , Electron. J. Probab. 11 (2006), 1094-1132. · Zbl 1139.60046
[4] M. Balázs and T. Seppäläinen, Order of current variance and diffusivity in the asymmetric simple exclusion process , Ann. of Math. (2) 171 (2010), 1237-1265. · Zbl 1200.60083 · doi:10.4007/annals.2010.171.1237
[5] F. Baudoin and N. O’Connell, Exponential functionals of Brownian motion and class-one Whittaker functions , Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), 1096-1120. · Zbl 1269.60066 · doi:10.1214/10-AIHP401
[6] A. Berenstein and D. Kazhdan, “Geometric and unipotent crystals” in GAFA 2000 (Tel Aviv, 1999) , Geom. Funct. Anal. 2000 , Birkhäuser, Basel, 2000, 188-236. · Zbl 1044.17006
[7] A. Berenstein and D. Kazhdan, “Lecture notes on geometric crystals and their combinatorial analogues” in Combinatorial Aspect of Integrable Systems , MSJ Mem. 17 , Math. Soc. Japan, Tokyo, 2007. · Zbl 1146.17306
[8] A. Berenstein and A. N. Kirillov, The Robinson-Schensted-Knuth bijection, quantum matrices and piece-wise linear combinatorics , preprint, (accessed 19 December 2013).
[9] P. Biane, P. Bougerol, and N. O’Connell, Littelmann paths and Brownian paths , Duke Math. J. 130 (2005), 127-167. · Zbl 1161.60330 · doi:10.1215/S0012-7094-05-13014-9
[10] Ph. Biane, Ph. Bougerol, N. O’Connell, Continuous crystals and Duistermaat-Heckman measure for Coxeter groups , Adv. Math. 221 (2009), 1522-1583. · Zbl 1252.20037 · doi:10.1016/j.aim.2009.02.016
[11] A. Borodin and I. Corwin, Macdonald processes , to appear in Probab. Theory Related Fields, preprint, [math.PR]. 1111.4408v4 · Zbl 1291.82077 · doi:10.1007/s00440-013-0482-3
[12] A. Borodin, I. Corwin, and D. Remenik, Log-Gamma polymer free energy fluctuations via a Fredholm determinant identity , Comm. Math. Phys. 324 (2013), 215-232. · Zbl 1479.82112 · doi:10.1007/s00220-013-1750-x
[13] A. Borodin and S. Péché, Airy kernel with two sets of parameters in directed percolation and random matrix theory , J. Stat. Phys. 132 (2008), 275-290. · Zbl 1145.82021 · doi:10.1007/s10955-008-9553-8
[14] P. Bougerol and T. Jeulin, Paths in Weyl chambers and random matrices , Probab. Theory Related Fields 124 (2002), 517-543. · Zbl 1020.15024 · doi:10.1007/s004400200221
[15] D. Bump, Automorphic Forms on \(\mathrm{GL}(3,{\mathbb{R} })\) , Lecture Notes in Math. 1083 , Springer, Berlin, 1984. · Zbl 0543.22005
[16] D. Bump, “The Rankin-Selberg method: A survey” in Number Theory, Trace Formulas, and Discrete Groups (Oslo, 1987) , Academic Press, Boston, 1989, 49-109.
[17] E. Cator and P. Groeneboom, Second class particles and cube root asymptotics for Hammersley’s process , Ann. Probab. 34 (2006), 1273-1295. · Zbl 1101.60076 · doi:10.1214/009117906000000089
[18] I. Corwin, The Kardar-Parisi-Zhang equation and universality class , Random Matrices Theory Appl. 1 (2012), art. 1130001. · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[19] I. Corwin and A. Hammond, The \(H\)-Brownian Gibbs property of the KPZ line ensemble , preprint, [math.PR]. 1312.2600v1
[20] V. Danilov and G. Koshevoy, The octahedron recurrence and RSK-correspondence , Sém. Lothar. Combin. 54A (2005/2007), Art. B54An. · Zbl 1267.05292
[21] M. Defosseux, Orbit measures, random matrix theory and interlaced determinantal processes , Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), 209-249. · Zbl 1216.15024 · doi:10.1214/09-AIHP314
[22] A. B. Dieker and J. Warren, On the largest-eigenvalue process for generalized Wishart random matrices , ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 369-376. · Zbl 1276.60008
[23] Y. Doumerc, “A note on representations of eigenvalues of classical Gaussian matrices” in Séminaire de Probabilités XXXVII , Lecture Notes in Math. 1832 , Springer, Berlin, 2003, 370-384. · Zbl 1042.60072
[24] M. Draief, J. Mairesse, and N. O’Connell, Queues, stores, and tableaux , J. Appl. Probab. 42 (2005), 1145-1167. · Zbl 1255.90040 · doi:10.1239/jap/1134587823
[25] P. L. Ferrari and H. Spohn, “Random growth models” in The Oxford Handbook of Random Matrix Theory , Oxford Univ. Press, Oxford, 2011, 782-801. · Zbl 1234.60010
[26] P. J. Forrester and E. M. Rains, Jacobians and rank \(1\) perturbations relating to unitary Hessenberg matrices , Int. Math. Res. Not. IMRN 2006 , art. ID 48306. · Zbl 1117.15026
[27] A. Gerasimov, D. Lebedev, and S. Oblezin, Baxter operator and Archimedean Hecke algebra , Comm. Math. Phys. 284 (2008), 867-896. · Zbl 1163.17010 · doi:10.1007/s00220-008-0547-9
[28] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture” in Topics in Singularity Theory , Amer. Math. Soc. Transl. Ser. 2 180 , Amer. Math. Soc., Providence, 1997, 103-115. · Zbl 0895.32006
[29] C. Greene, An extension of Schensted’s theorem , Adv. Math. 14 (1974), 254-265. · Zbl 0303.05006 · doi:10.1016/0001-8708(74)90031-0
[30] K. Johansson, Shape fluctuations and random matrices , Comm. Math. Phys. 209 (2000), 437-476. · Zbl 0969.15008 · doi:10.1007/s002200050027
[31] K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure , Ann. of Math. (2) 153 (2001), 259-296. · Zbl 0984.15020 · doi:10.2307/2661375
[32] S. Kharchev and D. Lebedev, Integral representations for the eigenfunctions of quantum open and periodic Toda chains from the QISM formalism , J. Phys. A 34 (2001), 2247-2258. · Zbl 0971.81172 · doi:10.1088/0305-4470/34/11/317
[33] A. N. Kirillov, “Introduction to tropical combinatorics” in Physics and Combinatorics, 2000 (Nagoya, 2000) , World Scientific, River Edge, N. J., 2001, 82-150. · Zbl 0989.05127
[34] W. König, N. O’Connell, and S. Roch, Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles , Electron. J. Probab. 7 (2002), 24 pp. · Zbl 1007.60075
[35] B. Kostant, “Quantisation and representation theory” in Representation Theory of Lie Groups (Oxford, 1977) , London Math. Soc. Lecture Note Ser. 34 , Cambridge Univ. Press, Cambridge, 1977, 287-316. · Zbl 0474.58010
[36] B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux , Adv. Math. 26 (1977), 206-222. · Zbl 0363.62068 · doi:10.1016/0001-8708(77)90030-5
[37] I. Macdonald, Symmetric Functions and Hall Polynomials , 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995. · Zbl 0824.05059
[38] H. Matsumoto and M. Yor, A version of Pitman’s \(2M-X\) theorem for geometric Brownian motions , C. R. Math. Acad. Sci. Paris 328 (1999), 1067-1074. · Zbl 0936.60076 · doi:10.1016/S0764-4442(99)80326-7
[39] J. Moriarty and N. O’Connell, On the free energy of a directed polymer in a Brownian environment , Markov Process. Related Fields 13 (2007), 251-266. · Zbl 1132.60327
[40] M. Noumi and Y. Yamada, “Tropical Robinson-Schensted-Knuth correspondence and birational Weyl group actions” in Representation Theory of Algebraic Groups and Quantum Groups (Tokyo, 2001) , Adv. Stud. Pure Math. 40 , Math. Soc. Japan, Tokyo, 2004, 371-442. · Zbl 1061.05103
[41] N. O’Connell, “Random matrices, non-colliding processes and queues” in Séminaire de Probabilités XXXVI , Lecture Notes in Math. 1801 , Springer, Berlin, 2002, 165-182. · Zbl 1041.15019
[42] N. O’Connell, Conditioned random walks and the RSK correspondence , J. Phys. A 36 (2003), 3049-3066. · Zbl 1035.05097 · doi:10.1088/0305-4470/36/12/312
[43] N. O’Connell, A path-transformation for random walks and the Robinson-Schensted correspondence , Trans. Amer. Math. Soc. 355 , no. 9 (2003), 3669-3697. · Zbl 1031.05132 · doi:10.1090/S0002-9947-03-03226-4
[44] N. O’Connell, Directed polymers and the quantum Toda lattice , Ann. Probab. 40 (2012), 437-458. · Zbl 1245.82091 · doi:10.1214/10-AOP632
[45] N. O’Connell, T. Seppäläinen, and N. Zygouras, Geometric RSK correspondence, Whittaker functions and symmetrized random polymers , to appear in Invent. Math., preprint, [math.PR]. 1210.5126v2 · Zbl 1246.57053
[46] N. O’Connell and J. Warren, A multi-layer extension of the stochastic heat equation , preprint, [math.PR]. 1104.3509v3
[47] N. O’Connell and M. Yor, Brownian analogues of Burke’s theorem , Stochastic Process. Appl. 96 (2001), 285-304. · Zbl 1058.60078 · doi:10.1016/S0304-4149(01)00119-3
[48] N. O’Connell and M. Yor, A representation for non-colliding random walks , Electron. Commun. Probab. 7 (2002), 1-12. · Zbl 1037.15019
[49] A. Okounkov, Infinite wedge and random partitions , Selecta Math. (N.S.) 7 (2001), 57-81. · Zbl 0986.05102 · doi:10.1007/PL00001398
[50] K. Rietsch, A mirror construction for the totally nonnegative part of the Peterson variety , Nagoya Math. J. 183 (2006), 105-142. · Zbl 1111.14048
[51] L. C. G. Rogers and J. W. Pitman, Markov functions , Ann. Probab. 9 (1981), 573-582. · Zbl 0466.60070 · doi:10.1214/aop/1176994363
[52] T. Sasamoto and H. Spohn, The \(1+1\)-dimensional Kardar-Parisi-Zhang equation and its universality class , J. Stat. Mech. Theory Exp. 11 (2010), P11013 (electron.).
[53] T. Seppäläinen, Hydrodynamic scaling, convex duality and asymptotic shapes of growth models , Markov Process. Related Fields 4 (1998), 1-26. · Zbl 0906.60082
[54] T. Seppäläinen, Exact limiting shape for a simplified model of first-passage percolation on the plane , Ann. Probab. 26 (1998), 1232-1250. · Zbl 0935.60093 · doi:10.1214/aop/1022855751
[55] T. Seppäläinen, Scaling for a one-dimensional directed polymer with boundary conditions , Ann. Probab. 40 (2012), 19-73. · Zbl 1254.60098 · doi:10.1214/10-AOP617
[56] T. Seppäläinen and B. Valko, Bounds for scaling exponents for a \(1+1\) dimensional directed polymer in a Brownian environment , ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010), 451-476. · Zbl 1276.60117
[57] E. Stade, Archimedean \(L\)-factors on \(\mathrm{GL}(n)\times\mathrm{GL}(n)\) and generalized Barnes integrals , Israel J. Math. 127 (2002), 201-219. · Zbl 1032.11020 · doi:10.1007/BF02784531
[58] A. M. Vershik and S. Kerov, Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux (in Russian), Dokl. Akad. Nauk. SSSR 233 , no. 6 (1977), 1024-1027; English translation in Soviet Math. Dokl. 233 , no. 1-6 (1977), 527-531. · Zbl 0406.05008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.