×

Neurodynamics of up and down transitions in network model. (English) Zbl 1288.92009

Summary: This paper focuses on the neurodynamical research of a small neural network that consists of 25 neurons. We study the periodic spontaneous activity and transitions between up and down states without synaptic input. The results demonstrate that these transitions are bidirectional or unidirectional with the parameters changing, which not only reveals the function of the cortex, but also cohere with the experiment results.

MSC:

92C42 Systems biology, networks
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, J.; Lampl, I.; Reichova, I.; Carandini, M.; Ferster, D., Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex, Nature Neuroscience, 3, 6, 617-621 (2000)
[2] Lampl, I.; Reichova, I.; Ferster, D., Synchronous membrane potential fluctuations in neurons of the cat visual cortex, Neuron, 22, 2, 361-374 (1999)
[3] Steriade, M.; Nunez, A.; Amzica, F., Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram, The Journal of Neuroscience, 13, 8, 3266-3283 (1993)
[4] Petersen, C. C. H.; Hahn, T. T. G.; Mehta, M.; Grinvald, A.; Sakmann, B., Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex, Proceedings of the National Academy of Sciences of the United States of America, 100, 23, 13638-13643 (2003)
[5] Parga, N.; Abbott, L. F., Network model of spontaneous activity exhibiting synchronous transitions between up and down states, Neuroscience, 1, 1, 57-66 (2007)
[6] Timofeev, I.; Grenier, F.; Steriade, M., Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study, Proceedings of the National Academy of Sciences of the United States of America, 98, 4, 1924-1929 (2001)
[7] Sachdev, R. N. S.; Ebner, F. F.; Wilson, C. J., Effect of subthreshold up and down states on the whisker evoked response in somatosensory cortex, Journal of Neurophysiology, 92, 6, 3511-3521 (2004)
[8] Haider, B.; Duque, A.; Hasenstaub, A. R.; Yu, Y.; McCormick, D. A., Enhancement of visual responsiveness by spontaneous local network activity in vivo, Journal of Neurophysiology, 97, 6, 4186-4202 (2007)
[9] Timofeev, I.; Grenier, F.; Bazhenov, M.; Sejnowski, T. J.; Steriade, M., Origin of slow cortical oscillations in deafferented cortical slabs, Cerebral Cortex, 10, 12, 1185-1199 (2000)
[10] Vialatte, F. B.; Dauwels, J.; Maurice, M.; Yamaguchi, Y.; Cichocki, A., On the synchrony of steady state visual evoked potentials and oscillatory burst events, Congnitive Neurodynamics, 3, 3, 251-261 (2009)
[11] Alexander, D. M.; van Leeuwen, C., Mapping of contextual modulation in the population response of primary visual cortex, Congnitive Neurodynamics, 4, 1, 1-24 (2010)
[12] Stern, E. A.; Jaeger, D.; Wilson, C. J., Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo, Nature, 394, 6692, 475-478 (1998)
[13] Brecht, M.; Schneider, M.; Sakmann, B.; Margrie, T. W., Hisker movements evoked by stimulation of single pyramidal cells in rat motor cortex, Nature, 427, 704-710 (2004)
[14] Houweling, R.; Brecht, M., Behavioural report of single neuron stimulation in somatosensory cortex, Nature, 451, 7174, 65-68 (2008)
[15] Li, C. T.; Poo, M.; Dan, Y., Burst spiking of a single cortical neuron modifies global brain state, Science, 324, 5927, 643-646 (2009)
[16] Wang, R.; Zhang, Z.; Chen, G., Energy coding and energy functions for local activities of brain, Neurocomputing, 73, 1-3, 139-150 (2009)
[17] Wang, R.; Zhang, Z.; Chen, G., Energy function and energy evolution on neural population, IEEE Transactions on Neural Networks, 19, 3, 535-538 (2008)
[18] Wang, R.; Zhang, Z., Energy coding in biological neural network, Cognitive Neurodynamics, 1, 3, 203-212 (2007)
[19] Liu, Y.; Wang, R.; Zhang, Z.; Jiao, X., Analysis on stability of neural network in the presence of inhibitory neurons, Congnitive Neurodynamics, 4, 1, 61-68 (2010)
[20] Steriade, M.; McCormick, D.; Sejnowski, T., Thalamocortical oscillations in the sleeping and aroused brain, Science, 262, 5134, 679-685 (1993)
[21] Destexhe, A.; Contreras, D.; Steriade, M., Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states, The Journal of Neuroscience, 19, 11, 4595-4608 (1999)
[22] Gervasoni, D.; Lin, S.-C.; Ribeiro, S.; Soares, E. S.; Pantoja, J.; Nicolelis, M. A. L., Global forebrain dynamics predict rat behavioral states and their transitions, The Journal of Neuroscience, 24, 49, 11137-11147 (2004)
[23] Qu, J.; Wang, R.; Du, Y.; Cao, J., Synchronization study ring-like and grid-like neuronal networks, Congnitive Neurodynamics, 6, 1, 21-31 (2012)
[24] Xu, X.; Wang, R., Neurodynamics of transitions between up and down states
[25] Rubinov, M.; Sporns, O.; Thivierge, J.-P.; Breakspear, M., Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons, PLoS Computational Biology, 7, 6 (2011)
[26] Williams, S. R.; Christensen, S. R.; Stuart, G. J.; Häusser, M.; Membrane, M., Potential bistability is controlled by the hyperpolarization activated current I(H) in rat cerebellar Purkinje neurons in vitro, The Journal of Physiology, 1, 539, 469-483 (2002)
[27] Roth, A.; Häusser, M., Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patchclamp recordings, The Journal of Physiology, 535, 445-472 (2001)
[28] Llinas, R.; Sugimori, M., Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, The Journal of Physiology, 305, 171-195 (1980)
[29] Llinas, R.; Sugimori, M., Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, The Journal of Physiology, 305, 197-213 (1980)
[30] Loewenstein, Y.; Mahon, S.; Chadderton, P.; Kitamura, K.; Sompolinsky, H.; Yarom, Y.; Häusser, M., Bistability of cerebellar Purkinje cells modulated by sensory stimulation, Neuroscience, 8, 2, 202-211 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.