×

Logarithmic and complex constant term identities. (English) Zbl 1290.05152

Bailey, David H. (ed.) et al., Computational and analytical mathematics. In Honor of Jonathan Borwein’s 60th birthday. Selected papers based on the presentations at the workshop, also known as JonFest, Simon Fraser University, BC, Canada, May 16–20, 2011. New York, NY: Springer (ISBN 978-1-4614-7620-7/hbk; 978-1-4614-7621-4/ebook). Springer Proceedings in Mathematics & Statistics 50, 219-250 (2013).
The authors explore generalizations of the Macdonald-Morris constant term identity \[ CT\left[\prod_{i=1}^{n} (1-x_{i})^{a}(1-x_{i}^{-1})^{b} \prod_{1 \leq i \neq j \leq n} \left(1 - \frac{x_{i}}{x_{j}} \right)^{k}\right] = \prod_{i=0}^{n-1} \frac{(a+b+ik)!((i+1)k!)}{(a+ik)!(b+ik)!k!}, \] related to results (some still conjectural) of D. Adamović and A. Milas [J. Algebra 344, No. 1, 313–332 (2011; Zbl 1244.17015); Int. Math. Res. Not. 2010, No. 20, 3896–3934 (2010; Zbl 1210.17031)].
The authors give a conjectured complex version of the Macdonald-Morris identity, where the parameter \(k\) is replaced by a complex parameter \(u\), and prove the conjecture in the case \(n=3\). They also show that this conjecture implies a “logarithmic” version of this identity.
The paper also includes a discussion of related identities in Type \(G_{2}\). (The Macdonald-Morris identity is a generalization of an identity originally conjectured by Macdonald, which can be phrased in terms of root systems. The results for \(G_{2}\) here are a generalization of that identity, while the Macdonald-Morris identity is a stronger generalization specific to Type A.) The authors also include a discussion of why such elegant identities do not seem to occur in the other classical types.
For the entire collection see [Zbl 1276.00018].

MSC:

05E05 Symmetric functions and generalizations
05A05 Permutations, words, matrices
05A10 Factorials, binomial coefficients, combinatorial functions
05A19 Combinatorial identities, bijective combinatorics
33C20 Generalized hypergeometric series, \({}_pF_q\)

Software:

GuessRat
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Adamović, D.; Milas, A., On W-algebras associated to (2, p) minimal models and their representations, Int. Math. Res. Not. IMRN, 20, 3896-3934 (2010) · Zbl 1210.17031
[2] Adamović, D.; Milas, A., On W-algebra extensions of (2, p) minimal models: p > 3, J. Algebra, 344, 313-332 (2011) · Zbl 1244.17015
[3] Andrews, G. E.; Askey, R.; Roy, R., Special Functions, Encyclopedia of Mathematics and Its Applications (1999), Cambridge: Cambridge University Press, Cambridge
[4] Apagodu, M.; Zeilberger, D., Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Adv. Appl. Math., 37, 139-152 (2006) · Zbl 1108.05010
[5] Bailey, W. N., Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics (1964), New York: Stechert-Hafner, Inc., New York · JFM 61.0406.01
[6] Bressoud, D. M., Proofs and Confirmations—The Story of the Alternating Sign Matrix Conjecture (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0944.05001
[7] Bressoud, D. M.; Goulden, I. P., Constant term identities extending the q-Dyson theorem, Trans. Amer. Math. Soc., 291, 203-228 (1985) · Zbl 0581.05004
[8] Cherednik, I., Double affine Hecke algebras and Macdonald’s conjectures, Ann. Math. (2), 141, 191-216 (1995) · Zbl 0822.33008
[9] Dyson, F. J., Statistical theory of the energy levels of complex systems I, J. Math. Phys., 3, 140-156 (1962) · Zbl 0105.41604
[10] Forrester, P. J.; Warnaar, S. O., The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.), 45, 489-534 (2008) · Zbl 1154.33002
[11] Gessel, I. M.; Xin, G., A short proof of the Zeilberger-Bressoud q-Dyson theorem, Proc. Amer. Math. Soc., 134, 2179-2187 (2006) · Zbl 1104.05009
[12] Gessel, I. M.; Lv, L.; Xin, G.; Zhou, Y., A unified elementary approach to the Dyson, Morris, Aomoto, and Forrester constant term identities, J. Combin. Theory Ser. A, 115, 1417-1435 (2008) · Zbl 1207.05016
[13] Good, I. J., Short proof of a conjecture by Dyson, J. Math. Phys., 11, 1884 (1970)
[14] Gunson, J.: unpublished
[15] Habsieger, L., La q-conjecture de Macdonald-Morris pour G_2, C. R. Acad. Sci. Paris Sér. I Math., 303, 211-213 (1986) · Zbl 0598.05006
[16] Habsieger, L., Une q-intégrale de Selberg et Askey, SIAM J. Math. Anal., 19, 1475-1489 (1988) · Zbl 0664.33001
[17] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1978) · Zbl 0447.17001
[18] Kadell, K. W.J., A proof of Askey’s conjectured q-analogue of Selberg’s integral and a conjecture of Morris, SIAM J. Math. Anal., 19, 969-986 (1988) · Zbl 0643.33004
[19] Kadell, K. W.J., Aomoto’s machine and the Dyson constant term identity, Methods Appl. Anal., 5, 335-350 (1998) · Zbl 0957.33009
[20] Kaneko, J., Forrester’s conjectured constant term identity II, Ann. Comb., 6, 383-397 (2002) · Zbl 1036.33011
[21] Károlyi, G., Nagy, Z.L.: A short proof of Andrews’ q-Dyson conjecture. Proc. Amer. Math. Soc., so appear · Zbl 1298.05025
[22] Knuth, D.E.: Overlapping Pfaffians. Electron. J. Combin. 3, 13 (1996) (Research Paper 5) · Zbl 0862.15007
[23] Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Combin. 42, 67 (1999) (Art. B42q) · Zbl 0923.05007
[24] Opdam, E. M., Some applications of hypergeometric shift operators, Invent. Math., 98, 1-18 (1989) · Zbl 0696.33006
[25] Macdonald, I. G., Some conjectures for root systems, SIAM J. Math. Anal., 13, 988-1007 (1982) · Zbl 0498.17006
[26] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), New York: Oxford University Press, New York · Zbl 0824.05059
[27] Morris, W.G.: Constant term identities for finite and affine root systems: conjectures and theorems. Ph.D. Thesis, University of Wisconsin-Madison (1982)
[28] Petkovšek, M.; Wilf, H. S.; Zeilberger, D., A = B (1996), Wellesley: A. K. Peters, Ltd., Wellesley
[29] Selberg, A., Bemerkninger om et multipelt integral, Norske Mat. Tidsskr., 26, 71-78 (1944) · Zbl 0063.06870
[30] Sills, A. V., Disturbing the Dyson conjecture, in a generally GOOD way, J. Combin. Theory Ser. A, 113, 1368-1380 (2006) · Zbl 1114.33025
[31] Sills, A.V.: Disturbing the q-Dyson conjecture. In: Tapas in Experimental Mathematics. Contemporary Mathematics, vol. 457, pp. 265-271. American Mathematical Society, Providence (2008) · Zbl 1191.05001
[32] Sills, A. V.; Zeilberger, D., Disturbing the Dyson conjecture (in a GOOD way), Experiment. Math., 15, 187-191 (2006) · Zbl 1121.05001
[33] Stanton, D., Sign variations of the Macdonald identities, SIAM J. Math. Anal., 17, 1454-1460 (1986) · Zbl 0609.17006
[34] Stembridge, J. R., A short proof of Macdonald’s conjecture for the root systems of type A, Proc. Amer. Math. Soc., 102, 777-786 (1988) · Zbl 0645.10017
[35] Stembridge, J. R., Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math., 83, 96-131 (1990) · Zbl 0790.05007
[36] Wilson, K., Proof of a conjecture of Dyson, J. Math. Phys., 3, 1040-1043 (1962) · Zbl 0113.21403
[37] Zeilberger, D., A combinatorial proof of Dyson’s conjecture, Discrete Math., 41, 317-321 (1982) · Zbl 0492.05007
[38] Zeilberger, D., A proof of the G_2 case of Macdonald’s root system-Dyson conjecture, SIAM J. Math. Anal., 18, 880-883 (1987) · Zbl 0643.05004
[39] Zeilberger, D., A Stembridge-Stanton style elementary proof of the Habsieger-Kadell q-Morris identity, Discrete Math., 79, 313-322 (1990) · Zbl 0693.05009
[40] Zeilberger, D.; Bressoud, D. M., A proof of Andrews’ q-Dyson conjecture, Discrete Math., 54, 201-224 (1985) · Zbl 0565.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.