Liang, Hongtao; Tang, Yanxia; Li, Li; Wei, Zhouchao; Wang, Zhen Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system. (English) Zbl 1290.34050 Kybernetika 49, No. 6, 935-947 (2013). Summary: In order to further understand a complex 3-D dynamical system proposed by Qi et al., showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system. MSC: 34C28 Complex behavior and chaotic systems of ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems 34C23 Bifurcation theory for ordinary differential equations 34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations Keywords:four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade PDF BibTeX XML Cite \textit{H. Liang} et al., Kybernetika 49, No. 6, 935--947 (2013; Zbl 1290.34050) Full Text: Link OpenURL References: [1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466. · Zbl 0962.37013 [2] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, Second edition. Springer-Verlag, New York 1998. · Zbl 0914.58025 [3] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. <a href=”http://dx.doi.org/10.1175/1520-0469(1963)0202.0.CO;2” target=”_blank”>DOI 10.1175/1520-0469(1963)0202.0.CO;2 [4] Lü, J. H., Chen, G. R.: A new chaotic attractor conined. Internat. J. Bifur. Chaos 12 (2002), 659-661. · Zbl 1063.34510 [5] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537. · Zbl 1129.37323 [6] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. · Zbl 1162.93353 [7] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. [8] Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C.: Local bifurcations of the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2257-2270. · Zbl 1047.34044 [9] Mello, L. F., Coelho, S. F.: Degenerate Hopf bifurcations in the L\(\ddot{u}\) system. Phys. Lett. A 373 (2009), 1116-1120. · Zbl 1228.70014 [10] Messias, M., Braga, D. C., Mello, L. F.: Degenerate Hopf bifurcaton in Chua’s system. Internat. J. Bifur. Chaos 19 (2009), 497-515. · Zbl 1170.34333 [11] Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Soliton Fract. 38 (2008), 705-721. · Zbl 1146.37332 [12] Rössler, O. E.: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398. · Zbl 1371.37062 [13] Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z.Naturfosch. A 36 (1981), 80-112. · Zbl 0599.58033 [14] Sotomayor, S., Mello, L. F., Braga, D. C.: Bifurcation analysis of the Watt governor system. Comm. Appl. Math. 26(2007), 19-44. · Zbl 1182.70038 [15] Sotomayor, S., Mello, L. F., Braga, D. C.: Lyapunov coefficients for degenerate Hopf bifurcations. arXiv:0709.3949v1 [math.DS], [16] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. [17] Sprott, J. C.: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23. [18] Sprott, J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274. · Zbl 1043.37504 [19] Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J.: Bifurcation analysis of the Qi 3-D four-wing chaotic system. Acta Phys. Pol. B 41 (2010), 767-778. [20] Schrier, G. van der, Maas, L. R. M.: The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36. · Zbl 0956.37038 [21] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. · Zbl 06048895 [22] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA 12 (2011), 106-118. · Zbl 1213.37061 [23] Wei, Z. C., Yang, Q. G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68 (2012), 543-554. · Zbl 1252.93067 [24] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA. 12 (2011), 106-118. · Zbl 1213.37061 [25] Wei, Z. C., Yang, Q. G.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 217 (2010), 422-429. · Zbl 1200.65102 [26] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949. · Zbl 1149.37308 [27] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414. · Zbl 1147.34306 [28] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083. · Zbl 1193.34091 [29] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.