Heinemann, Christian; Kraus, Christiane Existence results for diffuse interface models describing phase separation and damage. (English) Zbl 1290.35265 Eur. J. Appl. Math. 24, No. 2, 179-211 (2013). The authors investigate multi-component Cahn-Hilliard and Allen-Cahn systems which are coupled with elasticity and uni-directional damage processes. After the introduction of notation and labeling of the two systems of four equations \(S_0\) and \(S_c\), an appropriate notion of weak solutions is presented. Then existence of weak solutions for \(S_0\) (two cases) and \(S_c\) is shown, together with higher integrability of the strain tensor. Reviewer: Thomas Ernst (Uppsala) Cited in 14 Documents MSC: 35Q74 PDEs in connection with mechanics of deformable solids 35D30 Weak solutions to PDEs Keywords:Cahn-Hilliard systems; Allen-Cahn systems; phase separation; damage; elliptic-parabolic systems; energetic solution; weak solution; doubly nonlinear differential inclusions; existence results; rate-dependent systems; logarithmic-free energy PDF BibTeX XML Cite \textit{C. Heinemann} and \textit{C. Kraus}, Eur. J. Appl. Math. 24, No. 2, 179--211 (2013; Zbl 1290.35265) Full Text: DOI arXiv References: [1] DOI: 10.1016/0167-2789(95)00173-5 · Zbl 0885.35121 [2] Solder. Surf. Mount Technol. Improved Phys. Underst. Intermittent Failure Continuous 3 pp 20– (1991) [3] Interfaces Free Bound. 3 pp 101– (2001) [4] DOI: 10.1016/j.anihpc.2004.07.001 · Zbl 1072.35081 [5] Miranville, Mathematical Methods and Models in Phase Transitions pp 43– (2005) · Zbl 1191.82004 [6] Mat. Sbornik 46 pp 471– (1938) [7] DOI: 10.1007/BF01762360 · Zbl 0629.46031 [8] Ann. Scuola Norm. Pisa (III) 13 pp 1– (1959) [9] DOI: 10.1002/zamm.200900243 · Zbl 1191.35159 [10] DOI: 10.1016/j.cma.2009.09.020 · Zbl 1227.74058 [11] DOI: 10.1142/S021820250600111X · Zbl 1094.35068 [12] DOI: 10.1016/0020-7683(95)00074-7 · Zbl 0910.73051 [13] Non-Smooth Thermomechanics (2002) · Zbl 0990.80001 [14] DOI: 10.1142/S0218202509003346 · Zbl 1156.74036 [15] IMA Preprint Series 887 pp 1– (1991) [16] J. Convex Anal. 13 pp 151– (2006) [17] DOI: 10.1016/0001-6160(61)90182-1 [18] DOI: 10.1016/S0020-7683(99)00146-8 · Zbl 0973.74059 [19] DOI: 10.1016/j.jde.2005.04.015 · Zbl 1078.74048 [20] DOI: 10.1142/S0218202510004325 · Zbl 1263.74038 [21] DOI: 10.1016/S0167-2789(02)00373-1 · Zbl 1008.74066 [22] DOI: 10.1007/s00028-008-0412-5 · Zbl 1173.35076 [23] Electron. J. Differ. Equ. 126 pp 1– (2004) [24] Adv. Math. Sci. Appl. 10 pp 539– (2000) [25] Electron. J. Differ. Equ. 89 pp 1– (2005) [26] DOI: 10.1007/BF02188691 · Zbl 0840.35110 [27] Control Cybern. 34 pp 1005– (2005) [28] DOI: 10.1007/s00211-011-0389-9 · Zbl 1241.65075 [29] DOI: 10.1090/S0025-5718-99-01015-7 · Zbl 1126.65321 [30] DOI: 10.1016/0001-6160(79)90196-2 [31] Handbook Differ. Equ Evolutionary Equ. 2 pp 461– (2005) [32] DOI: 10.1016/0001-6160(82)90023-2 [33] Adv. Math. Sci. Appl. 21 pp 321– (2011) [34] Multiple Integrals in the Calcula of Variations and Nonlinear Elliptic Systems (1983) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.