Zhao, Zengqin; Du, Xinsheng Positive fixed points for semipositone operators in ordered Banach spaces and applications. (English) Zbl 1290.47051 Abstr. Appl. Anal. 2013, Article ID 406727, 5 p. (2013). Let \(E\) be a real ordered Banach space with the norm \(\|\cdot \|\), \(P\) a cone of \(E\), and “\(\leq \)” the partial ordering defined by \(P\). The cone \(P\) is said to be normal if there exists a positive constant \(N\) such that \( 0 \leq x \leq y\) implies \(\|x\|\leq N\|y\|\) and is said to be minihedral if \(\sup\{x, y\}\) exists for each pair of elements \(x, y \in\{\mathbb E\}\). The authors study the existence of positive fixed points for semipositone operators in ordered Banach spaces. They also apply their results to Hammerstein integral equations of polynomial type. Reviewer: Hüseyin Çakalli (Istanbul) MSC: 47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces 47H10 Fixed-point theorems 47N20 Applications of operator theory to differential and integral equations Keywords:monotone operators; positive operators; fixed-point theorems; ordered normed spaces × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Potter, A. J. B., Applications of Hilbert’s projective metric to certain classes of non-homogeneous operators, The Quarterly Journal of Mathematics. Oxford. Second Series, 28, 109, 93-99 (1977) · Zbl 0342.47039 · doi:10.1093/qmath/28.1.93 [2] Zhai, C.; Guo, C., On \(\alpha \)-convex operators, Journal of Mathematical Analysis and Applications, 316, 2, 556-565 (2006) · Zbl 1094.47047 · doi:10.1016/j.jmaa.2005.04.064 [3] Zhao, Z.; Du, X., Fixed points of generalized \(e\)-concave (generalized \(e\)-convex) operators and their applications, Journal of Mathematical Analysis and Applications, 334, 2, 1426-1438 (2007) · Zbl 1123.47037 · doi:10.1016/j.jmaa.2006.09.082 [4] Webb, J. R. L., Remarks on \(u_0\)-positive operators, Journal of Fixed Point Theory and Applications, 5, 1, 37-45 (2009) · Zbl 1201.47050 · doi:10.1007/s11784-008-0093-2 [5] Zhao, Z., Multiple fixed points of a sum operator and applications, Journal of Mathematical Analysis and Applications, 360, 1, 1-6 (2009) · Zbl 1173.47038 · doi:10.1016/j.jmaa.2009.06.016 [6] Zhao, Z.; Chen, X., Fixed points of decreasing operators in ordered Banach spaces and applications to nonlinear second order elliptic equations, Computers & Mathematics with Applications, 58, 6, 1223-1229 (2009) · Zbl 1191.47075 · doi:10.1016/j.camwa.2009.06.050 [7] Zhai, C.-B.; Cao, X.-M., Fixed point theorems for \(\tau - \varphi \)-concave operators and applications, Computers & Mathematics with Applications, 59, 1, 532-538 (2010) · Zbl 1189.65122 · doi:10.1016/j.camwa.2009.06.016 [8] Zhao, Z., Existence and uniqueness of fixed points for some mixed monotone operators, Nonlinear Analysis. Theory, Methods & Applications, 73, 6, 1481-1490 (2010) · Zbl 1229.47082 · doi:10.1016/j.na.2010.04.008 [9] Zhao, Z., Fixed points of \(\tau - \varphi \)-convex operators and applications, Applied Mathematics Letters, 23, 5, 561-566 (2010) · Zbl 1186.47047 · doi:10.1016/j.aml.2010.01.011 [10] Agarwal, R. P.; Grace, S. R.; O’Regan, D., Existence of positive solutions to semipositone Fredholm integral equations, Funkcialaj Ekvacioj, 45, 2, 223-235 (2002) · Zbl 1141.45303 [11] Lan, K. Q., Positive solutions of semi-positone Hammerstein integral equations and applications, Communications on Pure and Applied Analysis, 6, 2, 441-451 (2007) · Zbl 1134.45005 · doi:10.3934/cpaa.2007.6.441 [12] Lan, K. Q., Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Analysis. Theory, Methods & Applications, 71, 12, 5979-5993 (2009) · Zbl 1186.45002 · doi:10.1016/j.na.2009.05.022 [13] Graef, J. R.; Kong, L., Positive solutions for third order semipositone boundary value problems, Applied Mathematics Letters, 22, 8, 1154-1160 (2009) · Zbl 1173.34313 · doi:10.1016/j.aml.2008.11.008 [14] Webb, J. R. L.; Infante, G., Semi-positone nonlocal boundary value problems of arbitrary order, Communications on Pure and Applied Analysis, 9, 2, 563-581 (2010) · Zbl 1200.34025 · doi:10.3934/cpaa.2010.9.563 [15] Dogan, A.; Graef, J. R.; Kong, L., Higher order semipositone multi-point boundary value problems on time scales, Computers & Mathematics with Applications, 60, 1, 23-35 (2010) · Zbl 1198.34193 · doi:10.1016/j.camwa.2010.04.026 [16] Anderson, D. R.; Zhai, C., Positive solutions to semi-positone second-order three-point problems on time scales, Applied Mathematics and Computation, 215, 10, 3713-3720 (2010) · Zbl 1188.34119 · doi:10.1016/j.amc.2009.11.010 [17] Xian, X.; O’Regan, D.; Yanfang, C., Structure of positive solution sets of semi-positone singular boundary value problems, Nonlinear Analysis. Theory, Methods & Applications, 72, 7-8, 3535-3550 (2010) · Zbl 1193.34047 · doi:10.1016/j.na.2009.12.035 [18] Guo, D. J.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones. Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, 5, viii+275 (1988), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0661.47045 [19] Deimling, K., Nonlinear Functional Analysis, xiv+450 (1985), Berlin, Germany: Springer, Berlin, Germany · Zbl 1257.47059 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.