Grzybowski, Jerzy; Leśniewski, Andrzej; Rzeżuchowski, Tadeusz The completion of the space of convex, bounded sets with respect to the Demyanov metric. (English) Zbl 1290.52004 Demonstr. Math. 46, No. 1, 191-196 (2013). The authors study the space of bounded convex (not necessarily closed) sets in \(\mathbb R^d\) endowed with the Demyanov (pseudo)metric and for \(d=2\) describe the completion of the induced metric space. Reviewer: Taras Banakh (Lviv) Cited in 1 Document MSC: 52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces) 58C06 Set-valued and function-space-valued mappings on manifolds 54E50 Complete metric spaces Keywords:convex and bounded sets; Demyanov metric; Hausdorff metric; completion of metric spaces PDF BibTeX XML Cite \textit{J. Grzybowski} et al., Demonstr. Math. 46, No. 1, 191--196 (2013; Zbl 1290.52004) Full Text: DOI OpenURL References: [1] [1] J. P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Germany, 1984. · Zbl 0538.34007 [2] [2] R. Baier, E. Farkhi, Differences of convex compact sets in the space of directed sets. Part I: The space of directed sets, Set-Valued Anal. 9 (2001), 217-245. · Zbl 1097.49507 [3] [3] V. F. Demyanov, A. M. Rubinov, Quasidifferentiability and Related Topics, Kluwer, Netherlands, 2000. · Zbl 0949.00047 [4] [4] V. F. Demyanov, A. M. Rubinov, Constructive Nonsmooth Analysis, vol. 7 of Approximation & Optimization, Peter Lang, Frankfurt, 1995. · Zbl 0887.49014 [5] [5] P. Diamond, P. Kloeden, A. Rubinov, A. Vladimirov, Comparative properties of three metrics in the space of compact convex sets, Set-Valued Anal. 5 (1997), 267-289. · Zbl 0895.90151 [6] [6] A. Lesniewski, T. Rzezuchowski, The Demyanov metric for convex, bounded sets and existence of Lipschitzian selectors, to appear in J. Conv. Anal. 18 (2011), No. 3. · Zbl 1227.52002 [7] [7] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. · Zbl 0798.52001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.