×

A note on Julia-Carathéodory theorem for functions with fixed initial coefficients. (English) Zbl 1291.30086

Summary: Sharpened version of the Julia-Carathéodory Theorem for functions with fixed initial coefficients is proved.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. · Zbl 1205.30021
[2] C. Carathéodory, Conformal representation , Cambridge Tracts in Mathematics and Mathematical Physics, no. 28, Cambridge University Press, Cambridge, 1952. · Zbl 0047.07905
[3] V. N. Dubinin, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229; translation in J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623-3629.
[4] M. Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc. 18 (1967), 412-418. · Zbl 0165.09701
[5] J. B. Garnett, Bounded analytic functions , Pure and Applied Mathematics, 96, Academic Press, New York, 1981. · Zbl 0469.30024
[6] G. Julia, Extension nouvelle d’un lemme de Schwarz, Acta Math. 42 (1920), no. 1, 349-355. · JFM 47.0272.01
[7] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. 261 (2001), no. 2, 649-664. · Zbl 0988.30010
[8] A. Lecko, Some methods in the theory of univalent functions , Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2005. · Zbl 0889.30009
[9] A. Lecko, Boundary subordination, Ann. Polon. Math. 104 (2012), no. 2, 189-201. · Zbl 1243.30031
[10] R. Mortini and R. Rupp, Sums of holomorphic selfmaps of the unit disk, Ann. Univ. Mariae Curie-Skł odowska Sect. A 61 (2007), 107-115. · Zbl 1146.30006
[11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. · Zbl 0963.30014
[12] Ch. Pommerenke, Boundary behaviour of conformal maps , Grundlehren der Mathematischen Wissenschaften, 299, Springer, Berlin, 1992. · Zbl 0762.30001
[13] H. Unkelbach, Über die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938), no. 1, 739-742. · Zbl 0018.22403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.