Yuan, Jian; Shi, Bao; Zeng, Xiaoyun; Ji, Wenqiang; Pan, Tetie Sliding mode control of the fractional-order unified chaotic system. (English) Zbl 1291.34021 Abstr. Appl. Anal. 2013, Article ID 397504, 13 p. (2013). Summary: This paper deals with robust synchronization of the fractional-order unified chaotic systems. Firstly, control design for synchronization of nominal systems is proposed via fractional sliding mode technique. Then, systematic uncertainties and external disturbances are considered in the fractional-order unified chaotic systems, and adaptive sliding mode control is designed for the synchronization issue. Finally, numerical simulations are carried out to verify the effectiveness of the two proposed control techniques. Cited in 4 Documents MSC: 34A08 Fractional ordinary differential equations 93C15 Control/observation systems governed by ordinary differential equations 34H10 Chaos control for problems involving ordinary differential equations 93B12 Variable structure systems × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, 2004 (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2 [2] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008 [3] Chen, Y.; Petras, I., Fractional order control: a tutorial, Proceedings of the American Control Conference Hyatt Regency Riverfront [4] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation, 16, 3, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027 [5] Li, C. P.; Zhang, F. R., A survey on the stability of fractional differential equations, European Physical Journal, 193, 1, 27-47 (2011) · doi:10.1140/epjst/e2011-01379-1 [6] Wang, Y. H., Mittag-Leffler stability of a hybrid ratio-dependent fractional three species food chain, Communications in Fractional Calculus, 3, 111-118 (2012) [7] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K., Chaos in a fractional order Chua’s system, IEEE Transactions on Circuits and Systems I, 42, 8, 485-490 (1995) · doi:10.1109/81.404062 [8] Petráš, I., A note on the fractional-order Chua’s system, Chaos, Solitons and Fractals, 38, 1, 140-147 (2008) · doi:10.1016/j.chaos.2006.10.054 [9] Chen, J.-H.; Chen, W.-C., Chaotic dynamics of the fractionally damped van der Pol equation, Chaos, Solitons and Fractals, 35, 1, 188-198 (2008) · doi:10.1016/j.chaos.2006.05.010 [10] Barbosa, R. S.; MacHado, J. A. T.; Vinagre, B. M.; Caldern, A. J., Analysis of the Van der Pol oscillator containing derivatives of fractional order, Journal of Vibration and Control, 13, 9-10, 1291-1301 (2007) · Zbl 1158.70009 · doi:10.1177/1077546307077463 [11] Tavazoei, M. S.; Haeri, M.; Attari, M.; Bolouki, S.; Siami, M., More details on analysis of fractional-order Van der Pol oscillator, Journal of Vibration and Control, 15, 6, 803-819 (2009) · Zbl 1273.70037 · doi:10.1177/1077546308096101 [12] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Physical Review Letters, 91, 3 (2003) [13] Yu, Y.; Li, H.-X.; Wang, S.; Yu, J., Dynamic analysis of a fractional-order Lorenz chaotic system, Chaos, Solitons and Fractals, 42, 2, 1181-1189 (2009) · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016 [14] Li, C.; Chen, G., Chaos in the fractional order Chen system and its control, Chaos, Solitons and Fractals, 22, 3, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035 [15] Lu, J. G.; Chen, G., A note on the fractional-order Chen system, Chaos, Solitons and Fractals, 27, 3, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037 [16] Ueta, T.; Chen, G., Bifurcation analysis of Chen’s equation, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10, 8, 1917-1931 (2000) · Zbl 1090.37531 · doi:10.1142/S0218127400001183 [17] Lu, J. G., Chaotic dynamics of the fractional-order Lü system and its synchronization, Physics Letters A, 354, 4, 305-311 (2006) · doi:10.1016/j.physleta.2006.01.068 [18] Wang, X.-Y.; Wang, M.-J., Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, 17, 3 (2007) · Zbl 1163.37382 · doi:10.1063/1.2755420 [19] Li, C.; Chen, G., Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341, 1-4, 55-61 (2004) · doi:10.1016/j.physa.2004.04.113 [20] Zhang, W.; Zhou, S.; Li, H.; Zhu, H., Chaos in a fractional-order Rössler system, Chaos, Solitons and Fractals, 42, 3, 1684-1691 (2009) · Zbl 1198.34001 · doi:10.1016/j.chaos.2009.03.069 [21] Lu, J. G., Chaotic dynamics and synchronization of fractional-order Arneodo’s systems, Chaos, Solitons and Fractals, 26, 4, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023 [22] Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A., Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, Journal of Mathematical Analysis and Applications, 325, 1, 542-553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087 [23] Petras, I., Fractional-Order Nonlinear Systems (2011), Berlin, Germany: Springer, Berlin, Germany · Zbl 1228.34002 [24] Chen, W.-C., Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36, 5, 1305-1314 (2008) · doi:10.1016/j.chaos.2006.07.051 [25] Tavazoei, M. S.; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 20, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037 [26] Wu, G. C.; Baleanu, D., Discrete fractional logistic map and its chaos, Nonlinear Dynamics (2013) · Zbl 1281.34121 · doi:10.1007/s11071-013-1065-7 [27] Li, C. P.; Deng, W. H.; Xu, D., Chaos synchronization of the Chua system with a fractional order, Physica A, 360, 2, 171-185 (2006) · doi:10.1016/j.physa.2005.06.078 [28] Li, C.; Yan, J., The synchronization of three fractional differential systems, Chaos, Solitons & Fractals, 32, 2, 751-757 (2007) [29] Odibat, Z. M.; Corson, N.; Aziz-Alaoui, M. A.; Bertelle, C., Synchronization of chaotic fractional-order systems via linear control, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20, 1, 81-97 (2010) · Zbl 1183.34095 · doi:10.1142/S0218127410025429 [30] Kuntanapreeda, S., Robust synchronization of fractional-order unified chaotic systems via linear control, Computers & Mathematics with Applications, 63, 1, 183-190 (2012) · Zbl 1238.93045 · doi:10.1016/j.camwa.2011.11.007 [31] Peng, G., Synchronization of fractional order chaotic systems, Physics Letters A, 363, 5-6, 426-432 (2007) · Zbl 1197.37040 · doi:10.1016/j.physleta.2006.11.053 [32] Yuan, L.-G.; Yang, Q.-G., Parameter identification and synchronization of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 305-316 (2012) · Zbl 1245.93039 · doi:10.1016/j.cnsns.2011.04.005 [33] Hegazi, A. S.; Ahmed, E.; Matouk, A. E., On chaos control and synchronization of the commensurate fractional order Liu system, Communications in Nonlinear Science and Numerical Simulation, 18, 5, 1193-1202 (2013) · Zbl 1261.35148 · doi:10.1016/j.cnsns.2012.09.026 [34] Zhu, H.; Zhou, S.; He, Z., Chaos synchronization of the fractional-order Chen’s system, Chaos, Solitons and Fractals, 41, 5, 2733-2740 (2009) · Zbl 1198.93206 · doi:10.1016/j.chaos.2008.10.005 [35] Matouk, A. E., Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit, Communications in Nonlinear Science and Numerical Simulation, 16, 2, 975-986 (2011) · Zbl 1221.93227 · doi:10.1016/j.cnsns.2010.04.027 [36] Yan, J.; Li, C., On chaos synchronization of fractional differential equations, Chaos, Solitons & Fractals, 32, 2, 725-735 (2007) · Zbl 1132.37308 · doi:10.1016/j.chaos.2005.11.062 [37] Bhalekar, S.; Daftardar-Gejji, V., Synchronization of different fractional order chaotic systems using active control, Communications in Nonlinear Science and Numerical Simulation, 15, 11, 3536-3546 (2010) · Zbl 1222.94031 [38] Asheghan, M. M.; Beheshti, M. T. H.; Tavazoei, M. S., Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control, Communications in Nonlinear Science and Numerical Simulation, 16, 2, 1044-1051 (2011) · Zbl 1221.34007 [39] Pan, L.; Zhou, W.; Zhou, L.; Sun, K., Chaos synchronization between two different fractional-order hyperchaotic systems, Communications in Nonlinear Science and Numerical Simulation, 16, 6, 2628-2640 (2011) · Zbl 1221.37220 · doi:10.1016/j.cnsns.2010.09.016 [40] Odibat, Z., A note on phase synchronization in coupled chaotic fractional order systems, Nonlinear Analysis: Real World Applications, 13, 2, 779-789 (2012) · Zbl 1238.34121 · doi:10.1016/j.nonrwa.2011.08.016 [41] Mahmoudian, M.; Ghaderi, R.; Ranjbar, A.; Sadati, J.; Hosseinnia, S. H.; Momani, S., Synchronization of fractional-order chaotic system via adaptive PID controller, New Trends in Nanotechnology and Fractional Calculus Applications, 445-452 (2010), Springer · Zbl 1206.93059 [42] Jie, L.; Xinjie, L.; Junchan, Z., Prediction-control based feedback control of a fractional order unified chaotic system, Proceedings of the Chinese Control and Decision Conference (CCDC ’11) · doi:10.1109/CCDC.2011.5968549 [43] Zhang, Y. B.; Sun, W. G.; Wang, J. W.; Yang, K., Mixed synchronization for a class of fractionalorder chaotic systems via open-plus-closed-loop control, Communications in Fractional Calculus, 3, 62-72 (2012) [44] Yin, C.; Zhong, S.-m.; Chen, W.-f., Design of sliding mode controller for a class of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 356-366 (2012) · Zbl 1248.93041 · doi:10.1016/j.cnsns.2011.04.024 [45] Aghababa, M. P., Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller, Communications in Nonlinear Science and Numerical Simulation, 17, 6, 2670-2681 (2012) · Zbl 1248.93146 · doi:10.1016/j.cnsns.2011.10.028 [46] Dadras, S.; Momeni, H. R., Control of a fractional-order economical system via sliding mode, Physica A, 389, 12, 2434-2442 (2010) · doi:10.1016/j.physa.2010.02.025 [47] Yuan, J.; Bao, S.; Wenqiang, J., Adaptive sliding mode control of a novel class of fractional chaotic systems, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.93169 · doi:10.1155/2013/576709 [48] Faieghi, M. R.; Delavari, H.; Baleanu, D., Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control, Journal of Vibration and Control, 18, 9, 1366-1374 (2012) [49] Faieghi, M. R.; Delavari, H.; Baleanu, D., A note on stability of sliding mode dynamics in suppression of fractional-order chaotic systems, Computers & Mathematics with Applications, 66, 5, 832-837 (2013) · Zbl 1345.34005 · doi:10.1016/j.camwa.2012.11.015 [50] Yuan, J.; Bao, S.; Chao, D., Pseudo-state sliding mode control of fractional SISO nonlinear systems · Zbl 1291.93224 [51] Yin, C.; Dadras, S.; Zhong, S.-M.; Chen, Y., Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Applied Mathematical Modelling, 37, 4, 2469-2483 (2013) · Zbl 1349.93237 · doi:10.1016/j.apm.2012.06.002 [52] Caponetto, R., Fractional Order Systems: Modeling and Control Applications, 72 (2010), World Scientific Publishing Company [53] Monje, C. A.; Chen, Y.; Vinagre, B. M.; Xue, D.; Feliu, V., Fractional-Order Systems and Controls: Fundamentals and Applications (2010), London, UK: Springer, London, UK · Zbl 1211.93002 · doi:10.1007/978-1-84996-335-0 [54] Lü, J.; Chen, G.; Cheng, D.; Celikovsky, S., Bridge the gap between the Lorenz system and the Chen system, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12, 12, 2917-2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X [55] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods. Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (2012), Singapore: World Scientific, Singapore · Zbl 1248.26011 · doi:10.1142/9789814355216 [56] Wu, X.; Li, J.; Chen, G., Chaos in the fractional order unified system and its synchronization, Journal of the Franklin Institute, 345, 4, 392-401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.