×

On the convergence of the homotopy analysis method for inner-resonance of tangent nonlinear cushioning packaging system with critical components. (English) Zbl 1291.34026

Summary: Homotopy analysis method (HAM) is applied to obtain the approximate solution of inner-resonance of tangent cushioning packaging system based on critical components. The solution is obtained in the form of infinite series with components which can be easily calculated. Using a convergence-control parameter, the HAM utilizes a simple method to adjust and control the convergence region of the infinite series solution. The obtained results show that the HAM is a very accurate technique to obtain the approximate solution.

MSC:

34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.

References:

[1] Wang, J.; Khan, Y.; Yang, R. H.; Lu, L. X.; Wang, Z. W.; Faraz, N., A mathematical modelling of inner-resonance of tangent nonlinear cushioning packaging system with critical components, Mathematical and Computer Modelling, 54, 11-12, 2573-2576 (2011) · Zbl 1235.65104
[2] Wang, J.; Yang, R. H.; Li, Z. B., Inner-resonance in a cushioning packaging system, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 351-352 (2010)
[3] Wang, J.; Wang, Z.; Lu, L. X.; Zhu, Y.; Wang, Y. G., Three-dimensional shock spectrum of critical component for nonlinear packaging system, Shock and Vibration, 18, 3, 437-445 (2011)
[4] Wang, J.; Jiang, J. H.; Lua, L. X.; Wang, Z. W., Dropping damage evaluation for a tangent nonlinear system with a critical component, Computers and Mathematics with Applications, 61, 1979-1982 (2011)
[5] Wang, J.; Wang, Z., Damage boundary surface of a tangent nonlinear packaging system with critical components, Journal of Vibration and Shock, 27, 2, 166-167 (2008)
[6] Rashidi, M. M.; pour, S. A. M.; Abbasbandy, S., Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation, Communications in Nonlinear Science and Numerical Simulation, 16, 1874-1889 (2011)
[7] Alomari, A. K.; Noorani, M. S. M.; Nazar, R.; Li, C. P., Homotopy analysis method for solving fractional Lorenz system, Communications in Nonlinear Science and Numerical Simulation, 15, 1864-1872 (2010) · Zbl 1222.65082
[8] Bataineh, A. S.; Noorani, M. S. M.; Hashim, I., Modified homotopy analysis method for solving systems of second-order BVPs, Communications in Nonlinear Science and Numerical Simulation, 14, 2, 430-442 (2009) · Zbl 1221.65196 · doi:10.1016/j.cnsns.2007.09.012
[9] Ghoreishi, M.; Ismail, A. I. B. Md.; Rashid, A., Solution of a strongly coupled reaction-diffusion system by the homotopy analysis method, Bulletin of the Belgian Mathematical Society, 18, 3, 471-481 (2011) · Zbl 1227.65097
[10] Alomari, A. K.; Noorani, M. S. M.; Nazar, R., Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrodinger-KdV equation, Journal of Applied Mathematics and Computing, 31, 1-2, 1-12 (2009) · Zbl 1177.65152 · doi:10.1007/s12190-008-0187-4
[11] Alomari, A. K.; Noorani, M. S. M.; Nazar, R., The homotopy analysis method for the exact solutions of the \(K(2, 2)\), Burgers and coupled Burgers equations, Applied Mathematical Sciences, 2, 40, 1963-1977 (2008) · Zbl 1154.35438
[12] Ghoreishi, M.; Ismail, A. I. B. Md.; Alomari, A. K., Application of the homotopy analysis method for solving a model for HIV infection of CD4+ T-cells, Mathematical and Computer Modelling, 54, 11-12, 3007-3015 (2011) · Zbl 1235.65095 · doi:10.1016/j.mcm.2011.07.029
[13] Ghoreishi, M.; Ismail, A. I. B. Md.; Alomari, A. K., Comparison between homotopy analysis method and optimal homotopy asymptotic method for \(n\) th-order integro-differential equation, Mathematical Methods in the Applied Sciences, 34, 15, 1833-1842 (2011) · Zbl 1226.65109 · doi:10.1002/mma.1483
[14] Ghoreishi, M.; Ismail, A. I. B. Md.; Alomari, A. K.; Bataineh, A. S., The comparison between homotopy analysis method and optimal homotopy asymptotic method for nonlinear age-structured population models, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1163-1177 (2012) · Zbl 1239.92075 · doi:10.1016/j.cnsns.2011.08.003
[15] Ghoreishi, M.; Ismail, A. I. B. Md.; Rashid, A., The solution of coupled modified KdV system by the homotopy analysis method, TWMS Journal of Pure and Applied Mathematics, 3, 1, 122-134 (2012) · Zbl 1254.65114
[16] Hosseini, K.; Daneshian, B.; Amanifard, N.; Ansari, R., Homotopy analysis method for a fin with temperature dependent internal heat generation and thermal conductivity, International Journal of Nonlinear Science, 14, 2, 201-210 (2012) · Zbl 1302.80015
[17] Liao, S. J., Beyond Perturbation: Introduction to the homotopy Analysis Method (2003), Boca Raton, Fla, USA: Chapman and Hall/CRC Press, Boca Raton, Fla, USA
[18] Liao, S. J., Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 169, 2, 1186-1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[19] Liao, S. J., An optimal homotopy-analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation, 15, 8, 2003-2016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002
[20] Niu, Z.; Wang, C., A one-step optimal homotopy analysis method for nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation, 15, 8, 2026-2036 (2010) · Zbl 1222.65091 · doi:10.1016/j.cnsns.2009.08.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.