×

Synchronization of neural networks with mixed time delays under information constraints. (English) Zbl 1291.34088

Summary: This paper investigates the synchronization problem of neural networks with mixed time delays under information constrains. The designed synchronization scheme is built on the framework of hybrid systems. Besides including nonuniform sampling, some other characteristics, such as quantization, transmission-induced delays, and data packet dropouts, are also considered. The sufficient condition that depended on network characteristics is obtained to guarantee the remote asymptotical synchronization of neural networks with mixed time delays. A numerical example is given to illustrate the validity of the proposed method.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bishop, C. M., Neural Networks for Pattern Recognition (1996), New York, NY, USA: Oxford University Press, New York, NY, USA · Zbl 0868.68096
[2] Gupta, M. M.; Jin, L.; Homma, N., Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory (2003), New York, NY, USA: Wiley-IEEE Press, New York, NY, USA
[3] Michel, A. N.; Liu, D., Qualitative Analysis and Synthesis of Recurrent Neural Networks. Qualitative Analysis and Synthesis of Recurrent Neural Networks, Monographs and Textbooks in Pure and Applied Mathematics, 248, 481 (2002), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 1026.68115
[4] Karimi, H. R.; Gao, H., New delay-dependent exponential \(H_\infty\) synchronization for uncertain neural networks with mixed time delays, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40, 1, 173-185 (2010) · doi:10.1109/TSMCB.2009.2024408
[5] Li, H.; Wang, C.; Shi, P.; Gao, H., New passivity results for uncertain discrete-time stochastic neural networks with mixed time delays, Neurocomputing, 73, 16-18, 3291-3299 (2010) · doi:10.1016/j.neucom.2010.04.019
[6] Li, T.; Fei, S.-M.; Zhu, Q.; Cong, S., Exponential synchronization of chaotic neural networks with mixed delays, Neurocomputing, 71, 13-15, 3005-3019 (2008) · doi:10.1016/j.neucom.2007.12.029
[7] Liu, Y.; Wang, Z.; Liu, X., Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural Networks, 19, 5, 667-675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[8] Song, Q., Design of controller on synchronization of chaotic neural networks with mixed time-varying delays, Neurocomputing, 72, 13-15, 3288-3295 (2009) · doi:10.1016/j.neucom.2009.02.011
[9] Wang, Z.; Liu, Y.; Li, M.; Liu, X., Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks, 17, 3, 814-820 (2006) · doi:10.1038/sj.bjp.0706784
[10] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data, IEEE Transactions on Cybernectics, 43, 6, 1796-1806 (2013) · doi:10.1109/TSMCB.2012.2230441
[11] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling, IEEE Transactions on Neural Networks and Learning Systems, 23, 9, 1368-1376 (2012) · doi:10.1109/TNNLS.2012.2202687
[12] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Passivity analysis for discrete-time stochastic markovian jump neural networks with mixed time delays, IEEE Transactions on Neural Networks, 22, 10, 1566-1575 (2011) · doi:10.1109/TNN.2011.2163203
[13] Chen, Y.; Zheng, W. X., Stability analysis of time-delay neural networks subject to stochastic perturbations, IEEE Transactions on Cybernectics, 43, 6, 2122-2134 (2013) · doi:10.1109/TCYB.2013.2240451
[14] Zhang, C.-K.; He, Y.; Wu, M., Exponential synchronization of neural networks with time-varying mixed delays and sampled-data, Neurocomputing, 74, 1-3, 265-273 (2010) · doi:10.1016/j.neucom.2010.03.020
[15] Li, X.; Rakkiyappan, R., Impulse controller design for exponential synchronization of chaotic neural networks with mixed delays, Communications in Nonlinear Science and Numerical Simulation, 18, 6, 1515-1523 (2013) · Zbl 1286.34106 · doi:10.1016/j.cnsns.2012.08.032
[16] Yang, X.; Huang, C.; Zhu, Q., Synchronization of switched neural networks with mixed delays via impulsive control, Chaos, Solitons and Fractals, 44, 10, 817-826 (2011) · Zbl 1268.93013 · doi:10.1016/j.chaos.2011.06.006
[17] Jeong, S. C.; Ji, D. H.; Park, J. H.; Won, S. C., Adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer, Applied Mathematics and Computation, 219, 11, 5984-5995 (2013) · Zbl 1272.93076 · doi:10.1016/j.amc.2012.12.017
[18] Zhu, Q.; Zhou, W.; Tong, D.; Fang, J., Adaptive synchronization for stochastic neural networks of neutral-type with mixed time-delays, Neurocomputing, 99, 477-485 (2013) · doi:10.1016/j.neucom.2012.07.013
[19] Fu, M.; Xie, L., The sector bound approach to quantized feedback control, IEEE Transactions on Automatic Control, 50, 11, 1698-1711 (2005) · Zbl 1365.81064 · doi:10.1109/TAC.2005.858689
[20] Yang, D.; Cai, K.-Y., Decentralized networked stabilization for interconnected nonlinear systems: a fuzzy control approach, Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA ’10) · doi:10.1109/WCICA.2010.5554730
[21] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of Time-Delay Systems. Stability of Time-Delay Systems, Control Engineering, 353 (2003), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 1039.34067
[22] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory. Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, 193 (1994), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[23] Jiang, X.; Han, Q.-L.; Liu, S.; Xue, A., A new \(H_\infty\) stabilization criterion for networked control systems, IEEE Transactions on Automatic Control, 53, 4, 1025-1032 (2008) · Zbl 1367.93179 · doi:10.1109/TAC.2008.919547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.