×

Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative. (English) Zbl 1291.35016

Summary: The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

MSC:

35C05 Solutions to PDEs in closed form
35R11 Fractional partial differential equations

References:

[1] Adomian, G., Nonlinear Stochastic Operator Equations, xvi+287 (1986), Orlando, Fla, USA: Academic Press, Orlando, Fla, USA · Zbl 0609.60072
[2] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method. Solving Frontier Problems of Physics: The Decomposition Method, Fundamental Theories of Physics, 60, xiv+352 (1994), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0802.65122
[3] Adomian, G., A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications, 135, 2, 501-544 (1988) · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[4] Tatari, M.; Dehghan, M., The use of the Adomian decomposition method for solving multipoint boundary value problems, Physica Scripta, 73, 6, 672-676 (2006) · doi:10.1088/0031-8949/73/6/023
[5] Wazwaz, A.-M., Adomian decomposition method for a reliable treatment of the Bratu-type equations, Applied Mathematics and Computation, 166, 3, 652-663 (2005) · Zbl 1073.65068 · doi:10.1016/j.amc.2004.06.059
[6] Daftardar-Gejji, V.; Jafari, H., Adomian decomposition: a tool for solving a system of fractional differential equations, Journal of Mathematical Analysis and Applications, 301, 2, 508-518 (2005) · Zbl 1061.34003 · doi:10.1016/j.jmaa.2004.07.039
[7] Larsson, E., A domain decomposition method for the Helmholtz equation in a multilayer domain, SIAM Journal on Scientific Computing, 20, 5, 1713-1731 (1999) · Zbl 0936.65140 · doi:10.1137/S1064827597325323
[8] Tatari, M.; Dehghan, M.; Razzaghi, M., Application of the Adomian decomposition method for the Fokker-Planck equation, Mathematical and Computer Modelling, 45, 5-6, 639-650 (2007) · Zbl 1165.65397 · doi:10.1016/j.mcm.2006.07.010
[9] Machado, J. A. T.; Baleanu, D.; Luo, A. C., Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems (2011), New York, NY, USA: Springer, New York, NY, USA · Zbl 1228.37001
[10] Klafter, J.; Lim, S. C.; Metzler, R., Fractional Dynamics: Recent Advances, xiv+515 (2012), Singapore: World Scientific Publishing, Singapore · Zbl 1238.93005
[11] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity, xx+347 (2010), London, UK: Imperial College Press, London, UK · Zbl 1210.26004 · doi:10.1142/9781848163300
[12] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods. Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, xxiv+400 (2012), Hackensack, NJ, USA: World Scientific Publishing, Hackensack, NJ, USA · Zbl 1248.26011 · doi:10.1142/9789814355216
[13] Hedrih, K. S., Analytical mechanics of fractional order discrete system vibrations, Advances in Nonlinear Sciences, 3, 101-148 (2011)
[14] Hedrih, K., Modes of the homogeneous chain dynamics, Signal Processing, 86, 10, 2678-2702 (2006) · Zbl 1172.74312 · doi:10.1016/j.sigpro.2006.02.031
[15] Hedrih, K., Dynamics of coupled systems, Nonlinear Analysis: Hybrid Systems, 2, 2, 310-334 (2008) · Zbl 1158.74023 · doi:10.1016/j.nahs.2006.06.003
[16] Li, C.; Wang, Y., Numerical algorithm based on Adomian decomposition for fractional differential equations, Computers & Mathematics with Applications, 57, 10, 1672-1681 (2009) · Zbl 1186.65110 · doi:10.1016/j.camwa.2009.03.079
[17] Jafari, H.; Daftardar-Gejji, V., Solving a system of nonlinear fractional differential equations using Adomian decomposition, Journal of Computational and Applied Mathematics, 196, 2, 644-651 (2006) · Zbl 1099.65137 · doi:10.1016/j.cam.2005.10.017
[18] Momani, S.; Odibat, Z., Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Applied Mathematics and Computation, 177, 2, 488-494 (2006) · Zbl 1096.65131 · doi:10.1016/j.amc.2005.11.025
[19] Ray, S. S.; Bera, R. K., Analytical solution of a fractional diffusion equation by Adomian decomposition method, Applied Mathematics and Computation, 174, 1, 329-336 (2006) · Zbl 1089.65108 · doi:10.1016/j.amc.2005.04.082
[20] Wang, Q., Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Applied Mathematics and Computation, 182, 2, 1048-1055 (2006) · Zbl 1107.65124 · doi:10.1016/j.amc.2006.05.004
[21] Jafari, H.; Daftardar-Gejji, V., Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Applied Mathematics and Computation, 180, 2, 488-497 (2006) · Zbl 1102.65135 · doi:10.1016/j.amc.2005.12.031
[22] Safari, M.; Ganji, D. D.; Moslemi, M., Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation, Computers & Mathematics with Applications, 58, 11-12, 2091-2097 (2009) · Zbl 1189.65255 · doi:10.1016/j.camwa.2009.03.043
[23] El-Shahed, M., Adomian decomposition method for solving Burgers equation with fractional derivative, Journal of Fractional Calculus, 24, 23-28 (2003) · Zbl 1057.35052
[24] Hristov, J., Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution, International Review of Chemical Engineering, 3, 6, 802-809 (2011)
[25] Hristov, J., Heat-balance integral to fractional (half-time) heat diffusion sub-model, Thermal Science, 14, 2, 291-316 (2010) · doi:10.2298/TSCI1002291H
[26] Jafari, H.; Tajadodi, H.; Kadkhoda, N.; Baleanu, D., Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1308.35322 · doi:10.1155/2013/587179
[27] Atangana, A.; Secer, A., The time-fractional coupled-Korteweg-de-Vries equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.35273 · doi:10.1155/2013/947986
[28] Atangana, A.; Kılıçman, A. K., Analytical solutions of boundary values problem of 2D and 3D poisson and biharmonic equations by homotopy decomposition method, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.35026 · doi:10.1155/2013/380484
[29] Yang, X.-J., Local Fractional Functional Analysis and Its Applications (2011), Hong Kong: Asian Academic Publisher, Hong Kong
[30] Yang, X.-J., Advanced Local Fractional Calculus and Its Applications (2012), New York, NY, USA: World Science Publisher, New York, NY, USA
[31] Kolwankar, K. M.; Gangal, A. D., Local fractional Fokker-Planck equation, Physical Review Letters, 80, 2, 214-217 (1998) · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[32] Carpinteri, A.; Sapora, A., Diffusion problems in fractal media defined on Cantor sets, Zeitschrift für Angewandte Mathematik und Mechanik, 90, 3, 203-210 (2010) · Zbl 1187.80011 · doi:10.1002/zamm.200900376
[33] Golmankhaneh, A. K.; Fazlollahi, V.; Baleanu, D., Newtonian mechanics on fractals subset of real-line, Romania Reports in Physics, 65, 84-93 (2013)
[34] Yang, X.-J.; Srivastava, H. M.; He, J.-H.; Baleanu, D., Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Physics Letters A, 377, 28-30, 1696-1700 (2013) · Zbl 1298.35243 · doi:10.1016/j.physleta.2013.04.012
[35] Yang, X.-J.; Baleanu, D.; Tenreiro Machado, J. A., Systems of Navier-Stokes equations on Cantor sets, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.76047 · doi:10.1155/2013/769724
[36] Yang, X.-J.; Baleanu, D.; Tenreiro Machado, J. A., Mathematical aspects of Heisenberg uncertainty principle within local fractional Fourier analysis, Boundary Value Problems, 2013, 1, 131-146 (2013) · Zbl 1296.35154 · doi:10.1186/1687-2770-2013-131
[37] Yang, X.-J.; Baleanu, D.; Zhong, W. P., Approximate solutions for diffusion equations on cantor space-time, Proceedings of the Romanian Academy A, 14, 2, 127-133 (2013)
[38] Yang, X.-J.; Baleanu, D.; Lazarević, M. P.; Cajić, M. S., Fractal boundary value problems for integral and differential equations with local fractional operators, Thermal Science (2013) · doi:10.2298/TSCI130717103Y
[39] Yang, A. M.; Zhang, Y. Z.; Long, Y., The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar, Thermal Science, 17, 3, 707-713 (2013) · doi:10.2298/TSCI120826074Y
[40] Liu, C. F.; Kong, S. S.; Yuan, S. J., Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Thermal Science, 17, 3, 715-721 (2013) · doi:10.2298/TSCI120826075L
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.